Электрический ток

Условия, необходимые для получения электротока

Для существования электротока нужны следующие условия: наличие частиц, имеющих заряд, электропроводный материал, по которому будут двигаться частицы, источник напряжения. Важным условием получения электротока является наличие напряжения, которое определяется разностью потенциалов. Иными словами, сила, создаваемая заряженными частицами отталкивания, в одной точке больше, чем в другой.

Природных источников напряжения не существует, по этой причине вокруг нас равномерно распределяются электроны, но такие изобретения, как батарейки дали возможность накапливать в них электрическую энергию.

Другим важным условием является электрическое сопротивление, или проводник, по которому будут двигаться частицы, имеющие заряд. Материалы, в которых это действие возможно, называются электропроводными, а те, в которых нет свободного движения электронов, — изоляторами. Обыкновенный провод имеет проводящую металлическую жилу и изолирующую оболочку.

Электроток в проводниках

В любом проводнике есть носители электрического заряда, которые приходят в движение под воздействием силы поля, создаваемого электрической машиной.

Металлические проводники переносят заряд при помощи электронов. Чем выше температура проводника и нагрев провода, тем хуже протекает ток, так как в нем начинается хаотическое движение атомов от теплового воздействия, увеличивается сопротивление проводящего материала. Чем ниже температура проводника (в идеале — стремление к нулю), тем меньше его сопротивление.

Движение заряженных частиц в проводнике:


Движение заряженных частиц в проводнике

Жидкости могут проводить электроток при помощи ионов (электролиты). Перемещение происходит к электроду, имеющему противоположный с ионом знак, и, оседая на нем, ионы осуществляют процесс электролиза. Анионы — положительно заряженные ионы, двигающиеся к катоду. Катионы — ионы, имеющие отрицательный заряд, двигаются к аноду. В процессе нагревания электролита уменьшается его сопротивление.

Газ также имеет проводимость, электроток в нем — плазма. Движение происходит при помощи заряженных ионов или свободных электронов, которые получаются в процессе излучения.

Электронно-лучевая трубка — это пример электротока в вакууме от стержня катода к стержню анода.

Электроток в полупроводниках

Для понимания прохождения тока в этом материале дадим ему определение. Полупроводник — промежуточный материал между проводником и изолятором, зависит от удельной проводимости, наличия в нем примесей, температурного состояния и воздействующего на него излучения. Чем ниже температура, тем больше сопротивление полупроводника, свойства его влияют на измерения характеристик. Электроток в полупроводнике — это сумма электронного и дырочного тока.

Когда повышается температура полупроводника, происходит разрыв ковалентных связей от действия тепловой энергии на валентные электроны, образуются свободные электроны, в точке разрыва получается дырка. Она занимается валентным электроном другой пары, а сама перемещается далее в кристалле. Когда свободный электрон встречается с дыркой, между ними происходит рекомбинация, восстановление электронных связей. Когда на полупроводник воздействуют энергией электромагнитного излучения, появляются в нем электронно-дырочные пары.

Возникновение электротока в полупроводнике:


Возникновение электротока в полупроводнике

Важность

Плотность тока важна для проектирования электрических и электронных систем.

Характеристики схемы сильно зависят от проектного уровня тока, а плотность тока в этом случае определяется размерами проводящих элементов. Например, по мере уменьшения размера интегральных схем , несмотря на меньший ток, требуемый меньшими устройствами , наблюдается тенденция к более высокой плотности тока для достижения большего количества устройств на все меньших площадях микросхемы . См . Закон Мура .

На высоких частотах проводящая область в проводе становится ограниченной вблизи ее поверхности, что увеличивает плотность тока в этой области. Это известно как скин-эффект .

Высокая плотность тока имеет нежелательные последствия. Большинство электрических проводников имеют конечное положительное сопротивление , благодаря чему они рассеивают мощность в виде тепла. Плотность тока должна поддерживаться на достаточно низком уровне, чтобы предотвратить плавление или возгорание проводника, повреждение изоляционного материала или изменение требуемых электрических свойств. При высоких плотностях тока материал, образующий межсоединения, действительно перемещается — явление, называемое электромиграцией . В сверхпроводниках чрезмерная плотность тока может создавать достаточно сильное магнитное поле, вызывающее спонтанную потерю сверхпроводящего свойства.

Анализ и наблюдение плотности тока также используются для исследования физики, лежащей в основе природы твердых тел, включая не только металлы, но также полупроводники и изоляторы. Разработан сложный теоретический формализм для объяснения многих фундаментальных наблюдений.

Плотность тока — важный параметр в законе вращения Ампера (одном из уравнений Максвелла ), который связывает плотность тока с магнитным полем .

В специальной теории относительности заряд и ток объединены в 4-вектор .

Определение

Напряженность относят к величинам физического характера. Как уже говорилось, это силовой параметр. Равен обычно соотношению между силой, действующей на заряженное тело, и значением.

Важно. Показатель напряжённости относят и к векторным величинам

Определяют, с каким значением действует сила на заряженные предметы. При необходимости упрощает определение направления. Главная единица измерения – ньютон на кулон.

Определение напряжённости упрощает организацию измерения показателя. Если заранее знать значение энергии того или иного тела – проще измерить характеристику, воздействующую на него. Как найти напряжённость – объяснено дальше.

Электрическая энергия

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электрической сети. Он создается генераторами, работающими по закону индукции Фарадея, благодаря которому изменяющееся магнитное поле может индуцировать электрический ток в проводнике.

Генераторы имеют вращающиеся катушки провода, которые проходят через магнитные поля по мере их вращения. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и создают электрический ток, меняющий направление на каждом повороте. Ток проходит через полный цикл вперед и назад 60 раз в секунду.

Генераторы могут питаться от паровых турбин, нагретых углем, природным газом, нефтью или ядерным реактором. Из генератора ток проходит через ряд трансформаторов, где растет его напряжение. Диаметр проводов определяет величину и силу тока, которую они могут переносить без перегрева и потери энергии, а напряжение ограничено только тем, насколько хорошо линии изолированы от земли.

Интересно отметить, что ток переносится только одним проводом, а не двумя. Две его стороны обозначаются как положительная и отрицательная. Однако, поскольку полярность переменного тока изменяется 60 раз в секунду, они имеют и другие названия — горячие (магистральные линии электропередач) и заземленные (проходящие под землей для замыкания цепи).

Электрические токи в природе

Молния Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

2.1. Ток и плотность тока проводимости

Если в проводнике существует электрическое поле, оно вызывает упорядоченное движение зарядов, представляющих собой ток проводимости.

Свойство среды, характеризующее ее способность проводить ток, называют удельной проводимостью g. Единицей измерения удельной проводимости является сименс на метр (См/м).

Основной величиной в электрическом поле проводящей среды является плотность тока . Это векторная величина, совпадающая с направлением напряженности электрического поля.

Численно плотность тока равна пределу отношения тока Di сквозь элемент поверхности Ds, нормальный к направлению движения заряженных частиц, к этому элементу, когда последний стремится к нулю

  • Ток, проходящий сквозь поверхность s конечных размеров, равен
  • Таким образом, ток есть поток вектора плотности тока.
  • Характерным отличием тока проводимости от других видов тока является то, что плотность тока проводимости при постоянной температуре пропорциональна напряженности электрического поля. Коэффициентом пропорциональности и является удельная проводимость g
  • (2.1)
  • Эта формула представляет закон Ома в дифференциальной форме.
  • Если от обеих частей последнего уравнения взять интеграл по замкнутому контуру, включающему в себя источник электродвижущей силы (ЭДС), то получим второй закон Кирхгофа
  • В общем случае говорят, что в замкнутом контуре действует электродвижущая сила е, если линейный интеграл напряженности электрического поля вдоль замкнутого контура не равен нулю, причем этот линейный интеграл равен ЭДС, действующей в контуре:

Если рассматривать поле только в области пространства вне источников ЭДС, то будет справедливо уравнение (1.3) и (1.4).

Последнее позволяет сделать вывод о том, что вне источников ЭДС электрическое поле постоянных токов является, так же как и электростатическое поле, безвихревым.

Такое поле является потенциальным, поэтому для его характеристики может быть введена функция координат U(x,y,z), называемая электрическим потенциалом, причем и в данном случае будет справедливо уравнение (1.7).

§ 101. Энергия магнитного поля катушки

При размыкании цепи в опыте (см. рис. 150, в) лампочка ярко вспыхивала. Откуда же бралась энергия, за счет которой в данном случае горела лампочка? Так как это происходило, когда цепь была отключена от источника тока, т. е. при уменьшении индукции магнитного поля катушки, то, следовательно, энергия, потребляемая лампочкой, была раньше запасена в виде энергии магнитного поля. При размыкании цепи оно начинает исчезать и запасенная в нем энергия в процессе самоиндукции превращается в энергию электрического тока, за счет которой горит лампочка. Из рассмотренного делаем вывод: магнитное поле обладает энергией.

Запас энергии магнитного поля катушки равен энергии, израсходованной источником тока на преодоление э. д. с. самоиндукции за весь тот промежуток времени, пока сила тока при замыкании цепи возрастала от нуля до некоторого значения I (см. рис. 150, б). Часть работы э. д. с. источника в катушке идет на нагревание ее проводов, а часть, равная э. д. с. самоиндукции Еист = Ес, совершает работу против э. д. с. самоиндукции.

Работа тока, идущая на преодоление э. д. с. самоиндукции, равна энергии магнитного поля катушки:

Ток изменялся от 0 до I, следовательно, Поэтому Ток изменялся от 0 до I, тогда изменение тока ΔI = I. Значит,

Подставим Ес и Iср в формулу (3):

Получим формулу энергии магнитного поля катушки

Зависимость энергии магнитного поля катушки от ее индуктивности и силы тока в ней можно видеть на таком опыте. Увеличив реостатом силу тока в катушке, разомкнем цепь. В этом случае лампочка вспыхнула ярче, чем при малом токе в катушке. Значит, энергия магнитного поля катушки тем больше, чем больше сила тока в ней. Удалим из катушки половину сердечника, уменьшив тем самым ее индуктивность. Установим прежнюю силу тока в цепи и затем разомкнем ее. В этом случае лампочка вспыхивает менее ярко. Следовательно, энергия магнитного поля катушки тем больше, чем больше ее индуктивность. Энергия магнитного поля нами используется, например, в подъемном электромагнитном кране для притяжения кусков железа к сердечнику электромагнита крана, для получения тока во вторичной обмотке трансформатора.

Задача 36. В катушке без сердечника за 0,01 сек ток увеличился от 1 до 2 а, при этом в катушке возникла э. д. с. самоиндукции 20 в. Определить индуктивность катушки и изменение энергии ее магнитного поля.

Изменение энергии магнитного поля катушки Заменив получим

Если в контуре с индуктивностью L течёт ток I, то в момент размыкания цепи возникает индукционный ток и им совершается работа. Эта работа совершается за счёт энергии исчезнувшего при размыкании цепи магнитного поля. На основании закона сохранения и превращения энергию магнитного поля превращается главным образом в энергию электрического поля, за счёт которой происходит нагревание проводников. Работа может быть определена из соотношения

Так как , то

Уменьшение энергии магнитного поля равно работе тока, поэтому

(16.18)

Формула справедлива для любого контура и показывает, что энергия магнитного поля зависит от индуктивности контура и силы тока, протекающего по нему.

Рассчитаем энергию однородного магнитного поля длинного соленоида, индуктивность которого определяется по формуле L = μμn 2 V. B этом случае формула энергии примет вид

Учитывая, что напряжённость поля внутри бесконечно длинного соленоида Н=In, получаем

(16.19)

Выразим энергию через индукцию магнитного поля B= μμH:

(16.20)

(16.21)

Вследствие того, что магнитное поле соленоида однородно и локализовано внутри соленоида, энергия распределена по объёму соленоида с постоянной плотностью

(16.22)

Учитывая последние три формулы, получаем

Учитывая правило Ленца, можно заметить, что явление самоиндукции аналогично проявлению инертности тел в механике. Так, вследствие инертности тело не мгновенно приобретает определённую скорость, а постепенно. Так же постепенно происходит и его торможение. То же самое, как мы видели, происходит и с силой тока при самоиндукции. Эту аналогию можно провести и дальше.

и

эти уравнения эквивалентны.

Эквивалентны и формулы

Сила тока по определению

Постоянный ток можно рассматривать, как равномерное направленное движение заряженных частиц. Равномерное – значит, с одной и той же скоростью.

Если же ток изменяется, то будет изменяться и скорость движения зарядов.

Сила тока – это:

  1. физическая величина;
  2. отношение заряда, прошедшего через поперечное сечение проводника к длительности промежутка времени, в течение которого заряд проходил.

Для постоянного тока используем формулу:

\

\(\large I \left(A\right)\) – ток (сила тока) в Амперах;

\(\large \Delta q \left( \text{Кл}\right) \) – заряд в Кулонах, прошедший через поперечное сечение проводника;

\(\large \Delta t \left( c\right) \) – промежуток (кусочек) времени, в течение которого заряд прошел;

\

Если хотя бы одна из характеристик изменяется, ток называют переменным. Он будет различным в разные моменты времени. Если задано уравнение, описывающее, как изменяется заряд, то для вычисления такого тока удобно пользоваться производной.

Исключаем путаницу с понятием силы

В физике исторически сложилось использование таких терминов, как

  • сила тока,
  • электродвижущая сила,
  • лошадиная сила.

Эти единицы измерения имеют в своем названии слово «сила». Из механики известно, что сила – величина векторная, измеряется в Ньютонах. Однако, пусть это не вводит вас в заблуждение.

Ни одна из описанных величин не измеряется в Ньютонах. Перечисленные величины имеют другие единицы измерения:

  • силу тока измеряют в Амперах,
  • электродвижущую силу – в Вольтах,
  • а лошадиная сила – это единица измерения мощности, ее можно перевести в Ватты в системе СИ.

Чтобы исключить путаницу, вместо термина «сила тока», можно употреблять слово «ток». Сравните выражения: «Силу тока измеряют в Амперах» и «ток измеряют в Амперах».

Как видно, вполне можно обойтись словом «ток», вместо «силы тока». Смысл от этого не изменится.

Расчет плотности тока в веществе

Свободные токи

Носители заряда, которые могут свободно перемещаться, составляют плотность свободного тока , которая задается выражениями, такими как приведенные в этом разделе.

Электрический ток — это грубая средняя величина, которая говорит о том, что происходит во всем проводе. В позиции г в момент времени Т , то распределение по заряду течет описываются плотностью тока:

j(р,т)знак равноρ(р,т)vd(р,т){\ displaystyle \ mathbf {j} (\ mathbf {r}, t) = \ rho (\ mathbf {r}, t) \; \ mathbf {v} _ {\ text {d}} (\ mathbf {r} , t) \,}

где j ( r ,  t ) — вектор плотности тока, v d ( r ,  t ) — средняя скорость дрейфа частиц (единица СИ: м ∙ с −1 ), и

ρ(р,т)знак равноqп(р,т){\ Displaystyle \ rho (\ mathbf {г}, т) = д \, п (\ mathbf {г}, т)}

— плотность заряда (единица СИ: кулоны на кубический метр ), в которой n ( r ,  t ) — количество частиц в единице объема («числовая плотность») (единица СИ: м −3 ), q — заряд отдельные частицы с плотностью n (единица СИ: кулоны ).

Обычное приближение к плотности тока предполагает, что ток просто пропорционален электрическому полю, что выражается следующим образом:

jзнак равноσE{\ Displaystyle \ mathbf {j} = \ sigma \ mathbf {E} \,}

где E — электрическое поле, а σ — электропроводность .

Электропроводность σ является обратной ( обратной ) величиной удельного электрического сопротивления и имеет единицы СИ — сименс на метр (См- 1 ), а E имеет единицы СИ — ньютон на кулон (Н⋅К − 1 ) или, что то же самое, вольт. на метр (V⋅m −1 ).

Более фундаментальный подход к расчету плотности тока основан на:

j(р,т)знак равно∫-∞т∫Vσ(р-р′,т-т′)E(р′,т′)d3р′dт′{\ displaystyle \ mathbf {j} (\ mathbf {r}, t) = \ int _ {- \ infty} ^ {t} \ left {\ text {d}} t ‘\,}

указывающий на запаздывание реакции зависимостью σ от времени и нелокальный характер реакции на поле посредством пространственной зависимости σ , оба вычисляемые в принципе на основе лежащего в основе микроскопического анализа, например, в случае достаточно малых полей , функция линейного отклика для проводящего поведения в материале. См., Например, Giuliani & Vignale (2005) или Rammer (2007). Интеграл распространяется на всю прошлую историю до настоящего времени.

Указанная выше проводимость и связанная с ней плотность тока отражают фундаментальные механизмы, лежащие в основе переноса заряда в среде как во времени, так и на расстоянии.

Преобразование Фурье в пространстве и во времени , то результаты в:

j(k,ω)знак равноσ(k,ω)E(k,ω){\ Displaystyle \ mathbf {J} (\ mathbf {k}, \ omega) = \ sigma (\ mathbf {k}, \ omega) \; \ mathbf {E} (\ mathbf {k}, \ omega) \, }

где σ ( k ,  ω ) теперь .

Во многих материалах, например в кристаллических, проводимость является тензором , и ток не обязательно имеет то же направление, что и приложенное поле. Помимо свойств самого материала, приложение магнитных полей может изменить поведение проводимости.

Токи поляризации и намагничивания

Токи возникают в материалах при неравномерном распределении заряда.

В диэлектрических материалах существует плотность тока, соответствующая чистому движению электрических дипольных моментов на единицу объема, то есть поляризации P :

jпзнак равно∂п∂т{\ displaystyle \ mathbf {j} _ {\ mathrm {P}} = {\ frac {\ partial \ mathbf {P}} {\ partial t}}}

Аналогично магнитным материалам , циркуляция магнитных дипольных моментов на единицу объема, то есть намагниченности M, приводит к токам намагничивания :

jMзнак равно∇×M{\ Displaystyle \ mathbf {j} _ {\ mathrm {M}} = \ набла \ раз \ mathbf {M}}

Вместе эти члены складываются в плотность связанного тока в материале (результирующий ток из-за движений электрического и магнитного дипольных моментов на единицу объема):

jбзнак равноjп+jM{\ displaystyle \ mathbf {j} _ {\ mathrm {b}} = \ mathbf {j} _ {\ mathrm {P}} + \ mathbf {j} _ {\ mathrm {M}}}

Общий ток материалов

Полный ток — это просто сумма свободного и связанного токов:

jзнак равноjж+jб{\ displaystyle \ mathbf {j} = \ mathbf {j} _ {\ mathrm {f}} + \ mathbf {j} _ {\ mathrm {b}}}

Ток смещения

Также существует ток смещения, соответствующий изменяющемуся во времени электрическому полю смещения D :

jDзнак равно∂D∂т{\ displaystyle \ mathbf {j} _ {\ mathrm {D}} = {\ frac {\ partial \ mathbf {D}} {\ partial t}}}

который является важным членом в законе оборота Ампера , одном из уравнений Максвелла, поскольку отсутствие этого члена не предсказывает распространение электромагнитных волн или временную эволюцию электрических полей в целом.

Какой ток опасней для жизни человека

Переменный ток в промышленности и быту используется значительно чаще. К этому давно привыкли и мало кто знает, что в 19 веке Никола Тесла и Томас Эдисон развернули настоящую «токовую войну», итоги которой определяли дальнейший путь развития промышленности.

Проводник электричества

Одним из аргументов, приводимых Эдисоном в защиту постоянного тока, была его меньшая опасность для человека по сравнению с переменным. При одинаковых условиях (до 500 В) сила воздействия переменного тока на организм выше в 2-4 раза.

В итоге победила концепция переменного тока. Он значительно легче и с меньшими потерями передаётся на дальние расстояния, легко преобразуется, удобнее для работы электродвигателей.

Воздействие электротока на человеческое тело:

  • Термическое (до 60%) — нагрев кожи и внутренних тканей вплоть до ожогов;
  • Электролитическое — разложение и нарушение физико-химического состава органических жидкостей (крови, лимфы);
  • Механическое — расслоение и разрыв внутренних органов под воздействием электродинамического удара;
  • Биологическое — судорожные сокращения мышечной и нервной ткани.

Внимание! Потеря сознания, а также нарушение работы сердца и лёгких происходит при совпадении частоты электрического потока и сердечных сокращений

Переменный

Электроток, который с течением времени изменяется по величине и направлению. Поток электронов постоянно колеблется с определённой частотой.

Синусоида движения электронов

Почему для жизни человека переменный ток более опасен, чем постоянный:

  • В силу своей природы вызывает возбуждение нервной системы, сокращение и расслабление мышц, что повышает вероятность фибрилляции предсердий, приводящей к остановке сердца;
  • Частота проходящего импульса снижает сопротивление человеческого тела;
  • Электропроводник с переменным током обладает высокой силой притяжения.

На заметку! Верхняя граница силы переменного тока, не приводящая к поражению и тяжким последствиям — 1,2 мА.

Постоянный

Электроток — движение заряженных частиц от минуса к плюсу, полярность и напряжение которого постоянны. Поток электронов идёт строго по прямой линии без колебаний. Тяжесть поражения прямо пропорциональна величине подведённого напряжения.

Генератор постоянного тока

Причины меньшей опасности постоянного тока по сравнению с переменным:

  • Вызывает спазм мускулатуры, но не приводит к нарушениям сердечных сокращений;
  • Сопротивление человеческого тела выше при частоте колебаний электронов равной нулю;
  • Одиночный удар позволяет быстрее прекратить прямой контакт с электропроводником, отбрасывает человека, уменьшая длительность воздействия поражающих факторов на организм.

Внимание! Верхняя граница безопасного воздействия постоянного тока значительно выше — 7 мА. Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее. Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее

Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее.

Сила электротока (мА) Переменный ток Постоянный ток
0,6–1,5 Лёгкое покалывание Нет ощущений
2–3 Лёгкие судороги -«-
5–7 Сильные судороги Лёгкое покалывание, небольшое ощущение тепла
8–10 Выраженные болевые ощущения, верхний порог возможности самостоятельно разжать руки Возрастают симптомы покалывания кожи и нагрева
20–25 Паралич конечностей, невозможность отпустить источник тока Слабые судороги, сильный нагрев кожных покровов
50–80 Нарушение сердечной деятельности, паралич дыхательного центра Затруднённое дыхание, сильные судорожные спазмы
90–100 Остановка дыхания, вероятность фибрилляции предсердий Паралич органов дыхания, вероятность отброса пострадавшего, получения физической травмы
200–300 При воздействии более 0,1 с остановка сердца, разрушение тканей Термическое разрушение тканей

Обратите внимание! Важно знать, какой ток опасен для жизни — 50–100 мА, более 100 мА — смертелен. Оказание помощи при электротравме

Оказание помощи при электротравме

Оказание помощи при электротравме

Электрический ток. Условия существования тока. Основные понятия.

Электрический ток — упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.

Прохождение тока по проводнику сопровождается следующими его действиями: * магнитным (наблюдается во всех проводниках) * тепловым (наблюдается во всех проводниках, кроме сверхпроводников) * химическим (наблюдается в электролитах). Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий: * наличие в среде свободных электрических зарядов * создание в среде электрического поля. Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника, Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока. Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока. основные характеристики 1. Сила тока — I, единица измерения — 1 А (Ампер). Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени. I = Dq/Dt . Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным. Для переменного тока: I = lim Dq/Dt , Dt — 0 т.е. I = q’, где q’ — производная от заряда по времени. 2. Плотность тока — j, единица измерения — 1 А/м2. Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника: j = I/S . 3. Электродвижущая сила источника тока — э.д.с. ( e ), единица измерения — 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда: e = Аст./q . 4. Сопротивление проводника — R, единица измерения — 1 Ом. Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях. Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что R = r*l/S , где l — длина проводника, S — площадь поперечного сечения, r — коэффициент пропорциональности, названный удельным сопротивлением материала. Эта формула хорошо подтверждается на опыте. Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что r = r0(1 + a t) , R = R0(1 + a t) . Коэффициент a называется температурным коэффициентом сопротивления: a = (R — R0)/R0*t . Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная: В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля. У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов. Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s s = 1/r . 5. Напряжение — U , единица измерения — 1 В. Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда. U = (Aст.+ Аэл.)/q . Так как Аст./q = e, а Аэл./q = f1-f2, то U = e + (f1 — f2) .

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: