Щит земли: откуда у нашей планеты магнитное поле?

Загадка головной ударной волны

Земля вращается вокруг Солнца на скорости примерно 108 тысяч километров в час. Совсем как нос корабля, разрезающий воду на своем пути, магнитное поле нашей планеты прокладывает нам путь сквозь чрезвычайно горячий солнечный ветер, постоянно производимый нашей звездой.

Долгое время исследователи считали, что эта головная ударная волна вокруг Земли и была причиной того, что солнечный ветер обычно рассеивается, достигая поверхности нашей родной планеты уже в качестве нежного бриза, а не испепеляющей стихии. Без этого загадочного процесса наша Земля давно бы уже обуглилась. Впрочем, все детали происходящего до сих пор не до конца изучены.

В 2018 году, вероятно, было сделано одно очень важное открытие. Оказывается, магнитное поле Земли разрушает солнечные электроны

Когда ученые проанализировали данные со спутников, собранные в зоне столкновения геомагнитного поля и солнечного ветра, они были поражены тем, как это поле буквально разрывает на части звездный ветер.

Когда солнечный ветер на сверхзвуковой скорости достигает области головной ударной волны Земли, электроны ускоряются так сильно, что они просто распадаются на части. В итоге разрушительная энергия солнечного ветра трансформируется в менее опасную теплоту.

Радиационные пояса и космические лучи.

Радиационные пояса Земли – две области ближайшего околоземного космического пространства, которые в виде замкнутых магнитных ловушек окружают Землю.

В них сосредоточены огромные потоки протонов и электронов, захваченных дипольным магнитным полем Земли. Магнитное поле Земли оказывает сильное влияние на электрически заряженные частицы, движущиеся в околоземном космическом пространстве. Есть два основных источника возникновения этих частиц: космические лучи, т.е. энергичные (от 1 до12 ГэВ) электроны, протоны и ядра тяжелых элементов, приходящие с почти световыми скоростями, главным образом, из других частей Галактики. И корпускулярные потоки менее энергичных заряженных частиц (10 5 –10 6 эВ), выброшенных Солнцем. В магнитном поле электрические частицы движутся по спирали; траектория частицы как бы навивается на цилиндр, по оси которого проходит силовая линия. Радиус этого воображаемого цилиндра зависит от напряженности поля и энергии частицы. Чем больше энергия частицы, тем при данной напряженности поля радиус (он называется ларморовским) больше. Если ларморовский радиус много меньше, чем радиус Земли, частица не достигает ее поверхности, а захватывается магнитным полем Земли. Если ларморовский радиус много больше, чем радиус Земли, частица движется так, как будто бы магнитного поля нет, частицы проникают сквозь магнитное поле Земли в экваториальных районах, если их энергия больше 10 9 эв. Такие частицы вторгаются в атмосферу и вызывают при столкновении с ее атомами ядерные превращения, которые дают определенные количества вторичных космических лучей. Эти вторичные космические лучи уже регистрируются на поверхности Земли. Для исследования космических лучей в их первоначальной форме (первичных космических лучей) аппаратуру поднимают на ракетах и искусственных спутниках Земли. Примерно 99% энергичных частиц, «пробивающих» магнитный экран Земли, являются космическими лучами галактического происхождения и лишь около 1% образуется на Солнце. Магнитное поле Земли удерживает огромное число энергичных частиц, как электронов, так и протонов. Их энергия и концентрация зависят от расстояния до Земли и геомагнитной широты. Частицы заполняют как бы огромные кольца или пояса, охватывающие Землю вокруг геомагнитного экватора.

Для чего нужно магнитное поле Земли, Вы узнаете из этой статьи.

Какое значение магнитного поля Земли?

В первую очередь, оно защищает искусственные спутники и жителей планеты от действия частиц из космоса. К ним относят заряженные, ионизированные частицы солнечного ветра. Когда они попадают в нашу атмосферу, магнитное поле меняет их траекторию движения и направляет вдоль линии поля.

К тому же, в эпоху новых технологий мы вошли благодаря нашему магнитному полю. Все современные, продвинутые девайсы, которые работают, используя самые разные накопители памяти (диски, карты) – зависят напрямую от магнитного поля. Его напряженность и стабильность непосредственно оказывает влияние на абсолютно все информационные, компьютерные системы, так как вся информация, необходимая для их правильной работы, размещена на магнитных носителях.

Поэтому с уверенностью можно сказать, что процветание современной цивилизации, «жизнеспособность» ее технологий тесным образом зависит от состояния магнитого поля нашей планеты.

Что такое магнитное поле Земли?

Что касается его происхождения, то данный вопрос окончательно до сих пор не разрешен. Но большая часть исследователей склоняются к тому, что наличием магнитного поля наша планета обязана ядру. Оно состоит из внутренней твердой и наружной жидкой частей. Вращение Земли способствуют постоянным течениям в жидком ядре. А это приводит к возникновению магнитного поля вокруг них.

Большая часть планет Солнечной системы обладают магнитными полями в той или иной степени. Если их разместить в ряд по уменьшению дипольного магнитного момента, то получится такая картинка: Юпитер, Сатурн, Земля, Меркурий и Марс. Главная причина возникновения его – это наличие жидкого ядра.

Зачем планетам магнитное поле? Благодаря ему они защищены от проникновения вредоносных излучений, исходящих из Космоса, выполняя роль своеобразного фильтра. Также оно удерживает и притягивает ионосферу.

Надеемся, что из этой статьи Вы узнали, какую роль играет магнитное поле Земли.

От первых открытий к регулярным наблюдениям

Первым прибором, реагирующим на магнитное поле, стал компас. Достоверно можно говорить о его использовании с ХI—XIII веков. Во время плавания Колумба (1492 год) впервые было обнаружено явление, называемое магнитным склонением. До этого считалось, что компас показывает направление на север, то есть на Полярную звезду. По мере продвижения кораблей Колумба на запад отмечалось всё большее и большее отклонение компаса от направления на географический север. Поскольку в Средние века именно компас был основным прибором для навигации на море, с того времени началось активное исследование магнитного поля.

Вероятно, впервые временны́е изменения магнитного поля были зафиксированы в 1635 году Генри Геллибрандом, профессором астрономии Грешем-Колледжа в Лондоне, а постоянные регулярные измерения вариаций магнитного поля стали проводить с начала XIX века. В России наблюдения за изменением склонения геомагнитного поля Земли начались в Санкт-Петербурге с 1726 года, а регулярными их сделал Адольф Купфер, организовавший в Казанском университете в 1824 году первую в нашей стране магнитно-метеорологическую обсерваторию. А после его перевода в Санкт-Петербург в 1829 году исследования были организованы и там.

В 1834 году в России был принят закон об учреждении первой в мире постоянно действующей системы магнитных и метеорологических наблюдений и основана магнитно-метеорологическая обсерватория в Санкт-Петербурге. Благодаря этому русская геофизика оказалась лучшей в мире, а основанная тогда система магнитных и метеорологических наблюдений признана образцовой для стран Европы. Примерно за десять лет на территории России было создано семь магнитных обсерваторий. Наибольшего развития сеть магнитных обсерваторий и интенсивность магнитных исследований достигли к началу 1960-х годов. Сейчас, к сожалению, действующая сеть обсерваторий почти вернулась к состоянию XIX века.

Возникновение практической потребности построения карт магнитного склонения и накопление экспериментальных данных о магнитном склонении, которое началось с использования компаса, привело к развитию теорий магнетизма Земли. В 1600 году английский физик и врач Уильям Гильберт опубликовал замечательный труд «О магните, магнитных телах и большом магните — Земле» и доказал теорию о том, что Земля — это огромный двухполюсный магнит. Несмотря на то, что Гильберт ошибочно полагал, что магнитные полюса совпадают с географическими, его работа оказала большое влияние на последующее развитие науки.

Внесли свой вклад в развитие науки о магнетизме и российские учёные. В 1759 году М. В. Ломоносов написал труд «Рассуждение о большей точности морского пути», где он высказал гениальную догадку о неоднородности магнитного поля Земли. Значительной была и работа И. М. Симонова «Опыт математической теории земного магнетизма», опубликованная в 1835 году в «Учёных записках» Казанского университета. Окончательно методы описания магнитного поля были изложены в работе Карла Гаусса «Общая теория земного магнетизма» в 1838 году. Предполагая, что источники магнитного поля находятся внутри Земли, Гаусс вывел выражение для магнитного потенциала, которое позволяет описать любое распределение магнитного поля в виде набора коэффициентов разложения поля по так называемым гармоническим функциям Лежандра. Этот метод применяется и сегодня. Гаусс эмпирически определил значения первых 24 постоянных коэффициентов, сейчас обычно используют 196 коэффициентов, а для особо точного представления — более 300 тысяч коэффициентов.

Магнитотерапия

Особо интересным методом использования силы магнитных полей в эзотерике является магнитотерапия. Чаще всего такое лечение происходит за счет обычных магнитов или магнитных приборов. С их помощью маги лечат людей как от болезней физического тела, так и от разнообразного магического негатива. Такое лечение считается крайне эффективным, так как показывает положительный результат даже в запущенных случаях губительного воздействия черной магией.

Самый распространенный метод лечения магнитом связан с возмущением энергетических полей в момент столкновения одноименных полюсов магнита. Такое простое воздействие магнитных волн биополя заставляет энергетику человека резко встряхнуться и начать активно вырабатывать «иммунитет»: буквально разрывать и выталкивать из себя магический негатив. То же касается и болезней тела и психики, а также кармического негатива: сила магнита может способствовать очищению от любых загрязнений души и тела. Магнит своим действием похож на энергетик для внутренних сил.

Лишь некоторые практики способны использовать силы огромного земного инфополя. Если научиться грамотно работать с энергоинформационным полем, можно добиться потрясающих результатов. Маленькие магниты крайне эффективны в эзотерических практиках, а уж сила всего земного магнита даст куда большие возможностей для управления силами.

Постоянное магнитное поле — что это такое

Магнитное поле – это материя, возникающая вокруг постоянных магнитов или источников электрического тока. В пространстве оно представляет собой совокупность сил, способных оказывать воздействие на намагниченные тела. Это происходит из-за наличия на молекулярном уровне движущих разрядов.

Свойства магнитного поля:

  • возникает в результате изменения электрического поля во времени;
  • вектор магнитной индукции – основная величина, характеризующей интенсивность и направление магнитного поля, измерения производятся в Теслах ;
  • образуется только при перемещении заряда;
  • измеряется специальными приборами – датчиками, не воспринимается органами чувств человека;
  • распространяется в пространстве с конечной скоростью, равной скорости света в вакууме;
  • постоянный и переменный тип действия.

Как правило, переменное поле можно образовать индукторами, функционирующими от переменного тока.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Магнитное поле называют постоянным, если значение вектора магнитной индукции не изменяется со временем в каждой его точке. Такое поле существует вокруг неподвижного проводника с постоянным током или неподвижного магнита.

Магнитные поля белых карликов и нейтронных звезд

Ещё более сильные магнитные поля наблюдаются у звездных остатков (белых карликов и нейтронных звезд), которые отличаются крайне высокой угловой скоростью вращения. Оценки индукции их магнитных полей достигают 1012 Гаус. Измерение магнитных полей у подобных объектов стало возможным через регистрацию поляризации. Одновременно проводятся попытки измерения магнитных полей аккреционных дисков черных дыр также через регистрацию приходящего излучения. В настоящее время в этом направлении получены противоречивые результаты. Измерения, опубликованные в конце прошлого года и выполненные с рекордно высокой точностью показали, что величина индукции магнитного поля у аккреционного диска черной дыры лишь в несколько сотен раз больше, чем аналогичный показатель у Солнца (461 ± 12 гауссов). Прошлые оценки предполагали, что этот показатель у черных дыр должен быть в 400 раз выше. Новая оценка стала возможной благодаря сильной вспышке у V404 Лебедя, которая случилась 15 июня 2015 года и наблюдалась практически во всем диапазоне электромагнитного спектра (от рентгеновских лучей до радиоизлучения). Новая оценка ставит перед теоретиками серьезную проблему: наблюдаемая индукция не может полностью объяснить формирование мощных полярных джетов аккреционного диска черной дыры – следовательно, в их образовании участвует какой-то ещё механизм.

Характеристики магнитного поля

Основные характеристики:

  • магнитная индукция
  • магнитный поток
  • магнитная проницаемость

Магнитная индукция (B)

Это интенсивность магнитного поля. Чем сильнее магнит или электромагнит создаёт магнитное поле, тем больше индукция.

Формула: B = Ф / S.cos ()

Где:

  • B — магнитная индукция (в Тл — Тесла)
  • Ф — магнитный поток (в Вб — вебер)
  • S — площадь поверхности (в м²)
  • cos — угол (образованный угол между линиями B с вектором n, перпендикулярен плоскости S)

Магнитный поток (Ф)

Магнитная индукция (B) проходит через определённую поверхность (с площадью S), и индукция внутри неё будет значиться как магнитный поток (Ф). Формула: Ф = BS.

Это общее число магнитных силовых линий, которые пронизывают определённую ограниченную поверхность.

Магнитная проницаемость

Ещё магнитная индукция зависит и от среды, где создано магнитное поле. Эту величину характеризует магнитная проницаемость. Среда с большей магнитной проницаемостью создаст магнитное поле с большей индукцией.

Эпицентр смены полюсов геомагнитного поля

Магнитное поле Земли слабеет и истончается, и тоньше всего оно сейчас в районе между Южной Африкой и Чили, за что эту зону даже назвали Южно-атлантической аномалией. Исследователи решили внимательнее изучить этот регион в надежде, что там они найдут разгадку на вопрос о том, почему вообще все магнитное поле нашей планеты стало слабеть.

В 2018 году эксперты обнаружили еще одну аномалию, и в этот раз она растянулась от Южной Африки до Ботсваны. Когда люди железного века строили здесь свои глиняные дома, при их обжиге огонь сохранял магнетические минералы в глине таким образом, что по этим артефактам можно было определить состояние геомагнитного поля тех лет. На протяжении 1500 лет электромагнитное поле в этой части света то истончалось, то полностью меняло свое направление, то сжималось, то выдавалось наружу над общей схемой силовых линий.

Все эти перемены дали ученым основание полагать, что Южно-атлантическая аномалия происходила и ранее, и всякий раз она была предвестницей смены полюсов магнитного поля Земли. Если это, действительно, так, тогда необычная область в районе Южной Африки может стать тем самым местом, где и начнутся эти важнейшие перемены.

Нынешнее истончение магнитного поля нашей планеты может привести к 2 разным сценариям. Либо произойдет очередная переполюсовка, либо поле снова уплотнится, чтобы воспрепятствовать смене векторов. Второй вариант намного лучше, поскольку слабое магнитное поле не способно защищать нас от сильного ультрафиолетового излучения в достаточной мере. Все может начаться с регулярных перебоев в работе электросетей, которые в случае истончения станут слишком уязвимыми перед лицом геомагнитных бурь, а продолжится куда как более неприятными последствиями.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

    1. Индукционный ток возникает только при изменении линий магнитной индукции.
    1. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  1. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Магнитное поле: интересный факт

Напряжение геомагнитного поля всегда уменьшалось. Пусть незначительно, но год от года напряжение поля ослабевало. В последние столетия скорость его ослабевания увеличилась в десяток раз. Так, за прошедшую сотню лет геомагнитное поле потеряло 5% своей напряжённости. И на этом, к сожалению, процесс не остановился, и даже не замедлился, а как раз наоборот. На данный момент уменьшение напряжённости поля составляет порядка 7,7% в столетие (оцените тенденцию!). И сомнений в том, что причиной тому стала деятельность человека, сомнений практически ни у кого не вызывает. Вот только дать ответ на вопрос, что же конкретно повлияло на защитное поле планеты, никто не может. И это страшнее всего.

Недра ЗемлиВсё, что находится на достаточной глубине под землёй, называют недрами Земли. Это, по большей части, неизученное пространство.

Мантия ЗемлиПод земной корой находится мантия. Начинается она на глубине 30 км и тянется до внешнего ядра Земли, на глубину 2900 км.

МАГНИТНОЕ ПОЛЕ ЗЕМЛИ. Большинство планет Солнечной системы в той или иной степени обладают магнитными полями. По убыванию дипольного магнитного момента на первом месте Юпитер и Сатурн, а за ними следуют Земля, Меркурий и Марс, причем по отношению к магнитному моменту Земли значение их моментов составляет 20 000, 500, 1, 3/5000 3/10000. Дипольный магнитный момент Земли на 1970 составлял 7,98·10 25 Гс/см 3 (или 8,3·10 22 А.м 2 ), уменьшаясь за десятилетие на 0,04·10 25 Гс/см 3 . Средняя напряженность поля на поверхности составляет около 0,5 Э (5·10 –5 Тл). По форме основное магнитное поле Земли до расстояний менее трех радиусов близко к полю эквивалентного магнитного диполя. Его центр смещен относительно центра Земли в направлении на 18° с.ш. и 147,8° в. д. Ось этого диполя наклонена к оси вращения Земли на 11,5°. На такой же угол геомагнитные полюса отстоят от соответствующих географических полюсов. При этом южный геомагнитный полюс находится в северном полушарии. В настоящее время он расположен недалеко от северного географического полюса Земли в Северной Гренландии. Его координаты j = 78,6 + 0,04° Т с.ш., l = 70,1 + 0,07° T з.д., где Т – число десятилетий от 1970. У cеверного магнитного полюса j = 75 ° ю.ш., l = 120,4 ° в.д. (в Антарктиде). Реальные магнитные силовые линии магнитного поля Земли в среднем близки к силовым линиям этого диполя, отличаясь от них местными нерегулярностями, связанными с наличием намагниченных пород в коре. В результате вековых вариаций геомагнитный полюс прецессирует относительно географического полюса с периодом около 1200 лет. На больших расстояниях магнитное поле Земли несимметрично. Под действием исходящего от Солнца потока плазмы (солнечного ветра) магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров, выходя за орбиту Луны.

Специальный раздел геофизики, изучающий происхождение и природу магнитного поля Земли называется геомагнетизмом. Геомагнетизм рассматривает проблемы возникновения и эволюции основной, постоянной составляющей геомагнитного поля, природа переменной составляющей (примерно 1% от основного поля), а так же структура магнитосферы – самых верхних намагниченных плазменных слоев земной атмосферы, взаимодействующих с солнечным ветром и защищающих Землю от космического проникающего излучения

Важной задачей является изучение закономерностей вариаций геомагнитного поля, поскольку они обусловлены внешними воздействиями, связанными в первую очередь с солнечной активностью

Волновая теория конца вселенной

Аппарат НАСА для изучения реликтового излучения сл краеугольным камнем в волновой теории о том, существует ли конец Вселенной или нет?NASA/WMAP Science Team

Обвинять Альбрехта в отсутствии данных сложно. Это объясняется таким свойством космоса, как реликтовое излучение, образовавшееся с самыми первыми атомами, согласно теории Большого Взрыва. Оно не даёт учёным изучать дальние галактики и их звёзды, являясь естественным барьером в их освоении и возможностью заглянуть за край конца Вселенной, если он конечно есть.

Но вместе с тем реликтовое излучение позволяет специалистам рассмотреть волновой спектр космоса. Исследования в этой области навели учёных на гипотезу о том, что если Вселенная действительно бесконечна, то в ней должны находится волны самых разнообразных длин. Тем не менее, за девять лет своей работы, аппарат WMAP, запущенный НАСА, как раз для исследования реликтового излучения, не обнаружил сколь-нибудь крупных волн. Выяснилось, что космическое пространство имеет узкий спектр волн, а значит, конец Вселенной существует.

Пока, правда, астрофизикам не удалось определить точную форму и границы Вселенной. Однако исследовать это могут помочь всё те же волны в космосе, а точнее их вибрации. Благодаря их различным типам, возникающим в пространстве, можно определить что находится в конце Вселенной, какой она формы и какие границы имеет. Остаётся только подождать, ведь подобные исследования зачастую длятся годами.

Кирилл Панов

Способы обнаружения магнитного поля

Схема опыта для обнаружения магнитного поля:

  1. Закрепить параллельно и вертикально два гибких проводника. Для опыта можно взять проводники, состоящие из проволоки различной толщины и изготовленных из разных видов метала. Можно применить стальную, медную, алюминиевую, нихромовую проволоку.
  2. Присоединить полюса источников тока к их нижним концам. Проводники при этом не должны отталкиваться или приближаться друг к другу, поскольку кулоновские силы не проявляются при незначительной разности потенциалов зарядов проводников.
  3. Необходимо соединить проводники так, чтобы по ним пошел электрический ток.
  4. В первом варианте необходимо замкнуть концы проводников для возникновения в них токов противоположного направления. Проводники должны отталкиваться друг от друга.
  5. Во втором варианте необходимо замкнуть концы проводников для создания токов одного направления. Они должны притягиваться друг к другу.

Опыт позволяет обнаружить магнитное взаимодействие, то есть взаимодействие между электрическими зарядами, движущимися направленно.

Магнитное поле можно обнаружить по действию на электрический ток, то есть по действию на движущиеся заряды.

Опыт для определения характера действия магнитного поля на контур с током:

  1. Подвесить маленькую плоскую рамку, состоящую из нескольких витков проволоки, на сплетенные друг с другом тонкие гибкие проводники.
  2. Расположить вертикально провод на значительно большем расстоянии, чем размеры рамки.
  3. Рамку необходимо расположить так, чтобы при пропускании электрического тока через нее провод оказался в плоскости рамки.
  4. При изменении направления тока рамка должна поворачиваться на 180⁰.

Опыт показывает, что магнитное поле создается не только токами в проводниках, но так же его создает и любое направленное движение электрических зарядов.

Магнитное поле можно обнаружить по отклонению рядом находящейся магнитной стрелки на компасе, при пропускании через проводник электрического тока.

Магнитное поле также создается постоянными магнитами. Для его обнаружения необходимо на гибких проводниках подвесить между полюсами магнита плоскую рамку с током. Рамка должна поворачиваться до тех пор, пока ее плоскость не станет перпендикулярной линии, соединяющей полюсы магнита. Опыты позволяют увидеть ориентирующее действие магнитного поля на рамку с током.

Эмпирический способ нахождения скорости электромагнитных волн

Скорость, с которой распространяются электромагнитные волны, можно определить эмпирическим методом. При этом изучают неподвижные волны, полученные в цепи. К примеру, такую картину можно наблюдать, когда выход генератора подсоединен к проводам линии через конденсаторы. Во время работы генератора между проводами возникают колебания напряжения, что свидетельствует о наличии колебаний электрического поля. Таким образом образуется электромагнитная волна.

Понять интенсивность колебаний в разных точках линии можно, если включить лампы накаливания. Благодаря подобному опыту, удается выяснить, что возникновение стоячих волн в линии обусловлено определенной частотой генератора, совпадающей с частотой собственных колебаний линий.

Проводя измерения расстояния (△x), на которое удалены соседние узлы в стоячей волне, можно сделать вывод о том, что данная величина равна 1/2 длины волны (λ). Если измерить ν, то есть частоту колебаний генератора, то можно определить скорость распространения электромагнитной волны по формуле:

V = λ * v

Что такое однородное и неоднородное магнитное поле

Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

В однородном магнитном поле заряженная частица, движущаяся со скоростью \( \overrightarrow v\) перпендикулярно линиям индукции, подвергается воздействию силы \(\overrightarrow{F_л}\), постоянной по модулю и направленной перпендикулярно вектору скорости \(\overrightarrow v\). В таком поле магнитная индукция B во всех точках одинакова по модулю и направлению.

Благодаря силе Лоренца в однородном поле частицы движутся равномерно по окружности с центростремительным ускорением.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Сила Лоренца \(\overrightarrow{F_л}\) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:

\(F=qE+q\left\)

Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что частица равномерно движется по окружности с радиусом r.

Радиус r окружности определяется как частное произведения массы m со скоростью v и произведения электрического заряда q с индукцией B.

Радиус траектории движения частицы с постоянной массой и ее скорость не влияют на период ее обращения в однородном поле.

В однородном магнитном поле максимальный вращающий момент \(M_{max}\) при воздействии замкнутых проводников, изготовленных из очень тонкой проволоки разных размеров и форм, с током приобретает свойства:

  1. Он пропорционален силе тока в контуре I.
  2. Пропорционален площади контура.
  3. Для контуров с одинаковой площадью не зависит от их формы.

Таким образом, максимальный вращающий момент становится пропорциональным магнитному моменту \(P_{m}\) контура с током:

\(P_m=I\ast S.\)

Величина магнитного момента \(P_{m}\) характеризует действие магнитного поля на плоский контур с током.

В данном случае значение вращающего момента \(M_{max}\), действующего на контур с магнитным моментом \(P_{m}\), принимают равным единице.

Следовательно, формула для определения индукции B в однородном магнитном поле приобретает вид:

\(B=\frac{M_{max}}{P_m}.\)

Примеры однородных магнитных полей:

  1. Магнитное поле внутри соленоида. Соленоид — длинная цилиндрическая катушка, состоящая из нескольких витков плотно намотанной по винтовой лестнице проволоки. Каждый виток создает свое магнитное поле, которое складывается с другими в общее поле. Оно является однородным при условии, что длина катушки значительно превосходит ее диаметр. Тогда внутри соленоида линии поля будут параллельными его оси и прямыми.
  2. Магнитное поле внутри тороидальной катушки. Здесь линии замыкаются внутри самой катушки. Представлены в виде окружностей, параллельных оси тора. Токи в обмотке тороидальной катушки текут равномерно по часовой стрелке.

Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

В неоднородном магнитном поле магнитная индукция в разных местах имеет различные модули и направления. Для вычисления значения вектора \(\overrightarrow B\) в неоднородном поле необходимо определить вращающий момент, действующий на него. Для этого в некую точку помещают контур размеров, меньших в сравнении с расстояниями, на которых поле заметно меняется.

Примеры неоднородных магнитных полей:

  1. Снаружи соленоида. Линии на концах катушки соленоида не являются параллельными друг другу и тянутся от одного конца к другому. А снаружи вблизи боковой поверхности катушки поле практически отсутствует.
  2. Снаружи полосового магнита. Магнитное поле полосового магнита подобно полю вокруг соленоида. Магнитные линии тянутся от одного конца магнита к другому по направлению от северного полюса к южному. Имеется нейтральная зона.

Отличия однородного и неоднородного магнитных полей

  1. Однородное поле находится внутри проводника или магнита, неоднородное — снаружи.
  2. В однородном поле сила, действующая в разных точках, одинакова. В неоднородном — различна.
  3. Линии однородного магнитного поля являются одинаковыми по густоте и параллельными друг другу. В неоднородном поле линии отличаются по густоте и искривлены.
  4. Линии магнитной индукции однородного поля находятся на равном расстоянии друг от друга.

Природа магнитного поля Земли

Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году, предложив концепцию ]]>динамо]]>, согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды.

Однако в 1934 году Т. Каулинг доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма.

А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теорем.

Даже Альберт Эйнштейн скептически относился к осуществимости такого динамо при условии невозможности существования простых (симметричных) решений. Лишь гораздо позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х годах. несимметричные решения были найдены.

С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами.

Необходимые условия создаются в ядре Земли: в жидком внешнем ядре, состоящем в основном из железа при температуре порядка 4–6 тысяч кельвинов, которое отлично проводит ток, создаются ]]>конвективные]]> потоки, отводящие от твердого внутреннего ядра тепло (генерируемое благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты).

]]>Силы Кориолиса]]> закручивают эти потоки в характерные спирали, образующие так называемые ]]>столбы Тейлора]]>. Благодаря трению слоев они приобретают электрический заряд, формируя контурные токи. Таким образом, создается система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в ]]>]]>.

Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений.

Высказывались предположения, что динамо может возбуждаться за счет прецессии или приливных сил, то есть что источником энергии является вращение Земли, однако наиболее распространена и разработана гипотеза о том, что это все же именно термохимическая конвекция.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: