Понятие об электрическом аппарате. классификация электрических

Контакторы

Название контактор, происходит от простого слова контакт. Контакторы предназначены для частого (!) дистанционного отключения/включение силовых электроцепей напряжением до 1000 Вольт.

В зависимости от привода различают следующие типы контакторов:

  • электро-магнитные контакторы. Контакты отключений приводит в действие электрический магнит;
  • пневматические, работают от сжатого воздуха;
  • гидравлические, работают от давления жидкости.

Конструкция контакторов включает следующие элементы:

  • Основная группа контактов. Служит для включения выключения электрической цепи;
  • Дуго-гасительная камора. Гасит электродугу при работе контактов;
  • Электрический магнит. Обеспечивают движение контактов;
  • Вспомогательные клеммы. Для подключения других электрических аппаратов.

В нормальном положении основные контакты могут быть:

  • Замкнуты;
  • Разомкнуты;
  • Находиться в смешанном положении.

Под нормальным положением, понимают положение основных контактов, при котором на втягивающую электромагнитную катушку не подается напряжение, а все механические защелки аппарата свободны.

Работа контакторов

Работу контакторов можно описать так:

  • Напряжение подается на обмотку электрического магнита контактора, от чего якорь притягивается;
  • Якорь приводит в движение основные контакты, которые либо замыкают, либо размыкают цепь;
  • Дугогасительная камора гасит дугу замыкания/размыкания;
  • К вспомогательным контактам подключаются другие электрические аппараты.

КЛИМАТИЧЕСКОЕ ИСПОЛНЕНИЕ ЭЛЕКТРООБОРУДОВАНИЯ

Тривиально — климатическое исполнение определяет условия эксплуатации электрооборудования для соответствующих климатических районов (зон). Обозначается буквенно — цифровым кодом.

Буквенная часть обозначает климатическую зону, а цифровая — место (условия) размещения (см. таблицу).

Буквенная часть Климат (исполнение) Цифровая часть Размещение
У Умеренный 1 на открытом воздухе
ХЛ Холодный 2 в условиях, исключающих попадание прямого солнечного света
УХЛ Умеренный и холодный 3 закрытое помещение без кондиционирования (отопление, вентиляция)
Т Тропический 4 закрытое помещение с кондиционированием (отопление, вентиляция)
М Морской умеренный 5 помещения с повышенной влажностью, без кондиционирования
О Общеклиматическое, кроме морского
ОМ Общеклиматическое морское
В Всеклиматическое

Реле задержки

Это электрические аппараты для создания временной задержки в срабатывании других электрических аппаратов цепи.

Это очень полезные электрические аппараты, которые обеспечивают временную выдержку для срабатывания 2-х и более аппаратов, а также, при необходимости, обеспечении их очерёдности срабатывания.

Реле задержки бывают:

Электромагнитные. Очень практичный тип реле, который не боятся ударов, вибраций, имеют отличную износоустойчивость. Они могут обеспечить 600-650 включений в час, с погрешностью задержки не более 10 %. Однако, на них можно установить задержку не более 10 секунд.

Полупроводниковые. Очень популярные реле из-за возможности выставить задержки срабатывания от 0,1 секунды до 100 часов.

Цифровые.

Виды оборудования по ГОСТ

Согласно законодательно принятым документам, и маленькие боксы на 2 модуля, и большие распределительные шкафы-станции относятся к распределительным щиткам, отвечающим за подключение электрических групп. Со стандартами можно ознакомиться в редакции ГОСТ 32395-2013.

Щитки делятся на квартирные боксы и этажные – по месту установки. Следующее деление – на распределительные и учетно-распределительные. Вторые отличаются установкой счетчика.

Таким образом, можно выделить две большие категории:

  • квартирные – групповые и учетно-групповые;
  • этажные – распределительные, учетно-распределительные, учетно-распределительно-групповые.

По способу установки все перечисленные виды бывают настенными или встраиваемыми в специально подготовленную нишу.


Если настенный бокс просто закрепляется дюбелями на стене или перегородке, то для встроенного ящика необходимо вырезать или выдолбить нишу определенной глубины

Распределительные коробки защищены от поражения электротоком. По этому показателю они могут относиться к I или II классу.

Некоторые этажные изделия оснащены специальными отсеками для слаботочного оборудования. Квартирные боксы бывают с аппаратом на вводе и без него, рассчитаны на однофазную или трехфазную цепь.

Электрооборудование на выставке

В современном мире очень сложно представить свою жизнь без каких-либо электрических приборов. Чтобы красиво выглядеть – нужен утюг, хранить продукты – холодильник, следить за новостями в мире – телевизор. Они – наши постоянные спутники по жизни. Чтобы быть в курсе событий обязательно стоит посетить выставку, где будет представлено электрооборудование. Оно ежегодно выставляется международным комплексом «Экспоцентр».

Электроустановка

— совокупность машин, аппаратов,линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования её в другой вид энергии.

Электроустановка действующая

Действующая электроустановка

— электроустановка или её участок, которые находятся под напряжением либо на которые напряжение может быть подано включением коммутационных аппаратов, а также ВЛ (воздушная линия электропередачи), находящаяся в зоне действия наведенного напряжения или имеющая пересечение с действующей ВЛ.

Классы электрооборудования

Электрооборудование всегда подразделялось на классы, основные из которых являются способы защиты людей от электрического поражения током:

  1. Нулевой класс занимается только минимальной изоляцией. Он обеспечивает воздушные промежутки.
  2. Первый класс соединяется с сетью электроэнергии трехжильными кабелями. Он выступает средством связи с защитным проводником.
  3. Второй класс обеспечивает предохранение и усиливает изоляцию за счет заземления. Это усиливает общую защиту в два раза.
  4. Третий класс занимается электрическим питанием от низкого напряжения и его разнообразных источников.

Для безопасного и продуктивного процесса взаимодействия с приборами, схемами, аппаратами и разумного потребления энергии, безусловно, помогут и выручат в случае возникновения проблем и неполадок такого рода базовые знания.

Выбор аппаратов защиты.

Достоинство плавких предохранителей: просты по конструкции, надежно защищают электроустановки от токов коротких замыканий, обладают большой разрывной способностью, недороги по стоимости. Недостатки: имеют устойчивые защитные характеристики и хуже, чем автоматы, защищают электроустановки от небольших перегрузок, позволяют применять нестандартные плавкие вставки (жучки), необходимость замены сгоревших вставок усложняет обслуживание. Автоматы дороже, сложнее по конструкции, но имеют более устойчивые защитные характеристики, обеспечивают более надежную и селективную защиту от токов перегрузки, быстрое восстановление питания, дистанционное управление. При срабатывании предохранителей и автоматов возникающие искры, брызги расплавленного металла, дуги и раскаленные газы должны быть изолированы от окружающей среды. Аппараты защиты следует устанавливать на всех нормально незаземленных полюсах вначале сети, при уменьшении сечения проводников и на всех ответвлениях. Длина незащищенного участка ответвления должна быть не более 3 м. В труднодоступных местах аппараты защиты можно устанавливать на расстоянии до 30 м от ответвления. По условиям пожарной безопасности аппараты защиты устанавливают на панелях сборок, щитов и пультов так, чтобы возникающие в аппаратах искры, брызги металла, дуги не угрожали обслуживающему персоналу и не были бы причиной воспламенения и взрыва горючих и взрывоопасных веществ. В помещениях сырых, особо сырых, пыльных, с химически активной средой аппараты защиты желательно не устанавливать или располагать их в шкафах специального исполнения со степенью защиты IP44, IP54, IP55. В пожароопасных зонах степень защиты аппаратов должна быть не ниже IP44, IP54. Установка аппаратов защиты во взрывоопасных зонах не допускается.

Требования к аппаратам защиты.

Аппараты защиты должны удовлетворять следующим условиям:

  1. Не нагреваться сверх допустимой для них температуры в условиях нормальной эксплуатации.
  2. Не отключать электроустановки при кратковременных перегрузках (пусковые токи, «пики» токов технологических нагрузок, токи при самозапуске и т. п.)

Номинальные токи плавких вставок предохранителей и токи уставок автоматов, служащих для защиты отдельных участков сети, следует выбирать по возможности минимальными по расчетным токам этих участков. Для удовлетворения первого условия необходимо выбирать аппарат защиты так, чтобы номинальный ток самого аппарата и плавкой вставки или расцепителей были равны расчетному току сети, т.е.: для предохранителей для автоматов и тепловых реле магнитных пускателей Для удовлетворения второго условия необходимо учитывать режим работы установки и расчетные токи сети. Выбор плавких вставок может производиться по защитным характеристикам предохранителей (графически). При защите автоматами с электромагнитным или комбинированным расцепителем необходимо, чтобы ток срабатывания Iсррасц превышал максимальный кратковременный ток линии Iмакс и соответствовал условию: для автоматов АЗ 120, АЗ 130, АЗ 140 и АП-50 для автоматов АЗ110 Ток срабатывания теплового расцепителя автомата и основных реле определяется по условиям: для автоматов АЗ310, АП-50 и Б-25 для тепловых реле магнитных пускателей при легких условиях пуска электродвигателя (длительность пуска до 10 с) для тепловых реле магнитных пускателей при затяжных пусковых режимах электродвигателей

  1. Аппараты защиты должны отключать сеть при длительных перегрузах с обратно зависимой от тока выдержкой времени.
  2. Во всех случаях аппараты защиты должны обеспечивать отключение аварийного участка при КЗ в конце защищаемой линии:

при защите сетей во взрывоопасных зонах при защите сетей невзрывоопасных зонах * 1,25 — для автоматов на номинальные токи свыше 100 А; 1,4 — до 100 А.

  1. Отключая способность 1пр аппарата защиты должна соответствовать токам КЗ в начале защищаемого участка сети.

Если она оказывается меньше величины возможного тока КЗ, отключения аварийного участка может не произойти или время отключения будет недопустимо большим и сам аппарат повредится. Поэтому нужно, чтобы 1пр был больше или равен наибольшему возможному току КЗ в начале защищаемого участка сети, т.е.

  • Назад
  • Вперёд

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Защитные устройства

В современном мире с каждым годом увеличивается спрос на электротехническую продукцию, а на замену устаревшему оборудованию приходит новое. Без таких устройств невозможна работа электросети. Кроме того, они обеспечивают безопасность эксплуатации и увеличивают срок службы бытовых приборов и промышленного оборудования.

Также такая продукция позволяет автоматизировать некоторые процессы. Примером могут служить автоматические выключатели, которые проводят ток цепи в нормальных режимах и автоматически защищают электрические сети и оборудование от аварийных режимов.

Немаловажным является устройство защитного отключения. Оно отключает систему в случае утечки тока в результате пробоя на корпус электрических нагревателей, духовых шкафов, стиральных машин и других бытовых приборов, и таким образом защищает человека от поражения электрическим током.

Одним из наиболее современных защитных устройств являются дифференциальные автоматы, которые совмещают в себе функции автоматического выключателя и УЗО.

Маркировка электроинструмента

Какую маркировку должен иметь электроинструмент:

  • Первый класс — три горизонтально расположенные линии и одна вертикальная, что располагается выше. Обозначения обведены кругом. Есть изоляция и зануление, а также шнур для подключения к электросети.
  • Второй класс электроинструмента — два квадрата (маленький внутри большого). Отсутствует заземление, но есть усиленная изоляция компонентов, к которым человек может притронуться во время работы.
  • Третий класс — ромб с тройкой вертикальных линий. Отсутствует заземление, оборудование работает от 42 В (самый электро безопасный электроинструмент относится именно к этому классу).

Маркировки на инструментах играют важную роль

Маркировка несложная, и ее легко запомнить.

Защитные устройства

В современном мире с каждым годом увеличивается спрос на электротехническую продукцию, а на замену устаревшему оборудованию приходит новое. Без таких устройств невозможна работа электросети. Кроме того, они обеспечивают безопасность эксплуатации и увеличивают срок службы бытовых приборов и промышленного оборудования.

Также такая продукция позволяет автоматизировать некоторые процессы. Примером могут служить автоматические выключатели, которые проводят ток цепи в нормальных режимах и автоматически защищают электрические сети и оборудование от аварийных режимов.

Немаловажным является устройство защитного отключения. Оно отключает систему в случае утечки тока в результате пробоя на корпус электрических нагревателей, духовых шкафов, стиральных машин и других бытовых приборов, и таким образом защищает человека от поражения электрическим током.

Одним из наиболее современных защитных устройств являются дифференциальные автоматы, которые совмещают в себе функции автоматического выключателя и УЗО.

Производство электроэнергии

К сожалению или к счастью, электроэнергия — это продукт человеческого труда, которы невозможно получить напрямую — его надо произвести. Производят электроэнергию из первичных источников энергии, например нефть, уголь, газ, уран, энергия солнца, текущей и падающей воды, ветра и т.д. Производство электроэнергии происходит на электростанциях. На электростанциях энергия вырабатывается генераторами, которые приводятся в дейтсвие за счет тепловых двигателей либо других средств (например ветра или воды).

Первые электростанции в основном использовали гидроэнергию и уголь. Современное производство энергии использует более разнообразные источники 0 уголь, газ, атомная энергия, ветер, нефть, солнечная энергия, гидроэнергия, энергия приливов и другие типы. Однако, по-прежнему доля угольных электростанций в мировой электроэнергетике преобладает. Количество произведенной электроэнергии является одним из важнейших показателей уровня развития страны и ее экономики, точно также как и другие показатели, например ВВП страны.

Динамика мирового производства электроэнергии с 1890 года:

  • 1890 год — 9 млрд кВТ-час
  • 1900 год — 15 млрд кВТ-час
  • 1914 год — 37,5 млрд кВТ-час
  • 1950 год — 950 млрд кВТ-час
  • 1960 год — 2300 млрд кВТ-час
  • 1970 год — 5000 млрд кВТ-час
  • 1980 год — 8250 млрд кВТ-час
  • 1990 год — 11800 млрд кВТ-час
  • 2000 год — 14500 млрд кВТ-час
  • 2005 год — 18138,3 млрд кВТ-час
  • 2007 год — 19894,9 млрд кВТ-час
  • 2013 год — 23127 млрд кВТ-час
  • 2014 год — 23536,5 млрд кВТ-час
  • 2015 год — 24255 млрд кВТ-час
  • 2016 год — 24816 млрд кВТ-час
  • 2018 год — 26614 млрд кВТ-час

ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА

  1. Термическое. Заключается в нагреве тканей, органов, кровеносных сосудов и биологических сред организма, что приводит к перегреву всего организма, и, как следствие, нарушению обменных процессов и связанных с ними отклонений.
  2. Электролитическое. Заключается в разложении крови, плазмы и других физиологических растворов организма с деструкцией их функций.
  3. Биологическое. Связано с раздражением и возбуждением нервных волокон и тканей. Так же связано с раздражением и возбуждением других тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц.
  1. ^ Электрическая травма (местное действие) . Это четко выраженное местное повреждение тканей организма, вызванное воздействием электрического тока или электрической дуги. Обычно это повреждение участков кожи, связок и костей. В некоторых случаях электрические травмы приводят к смерти.

электрический ожогтоковыйдуговойэлектрический знакметаллизация кожи.электроофтальпия

  1. ^ Электрический удар (общее действие) . Это возбуждение живых тканей организма при прохождении через них электрического тока, сопровождающееся судорожным сокращением мышц. В зависимости от тяжести поражения электрические удары делят на 4 степени:

фибрилляцией

  1. Сила тока. Является основным фактором, обуславливающим степень поражения человека. Для характеристики воздействия на человека установлены 3 критерия:

Таблица 2.

Ток Пороговый ощутимый ток, мА Пороговый неотпускающий ток, мА Пороговый фибрилляционный ток, мА
Переменный 0,5…1,5 6…10 50…100
Постоянный 5…20 50…80 300
  1. Электрическое сопротивление тела человека. Сопротивление тела человека при сухой чистой коже составляет от 3 кОм до 100 кОм. При расчетах, связанных с электробезопасностью, сопротивление тела человека принимают равным 1 кОм.
  2. Длительность протекания через тело человека. Оказывает существенное влияние на исход поражения, поскольку с течением времени резко падает уровень сопротивления тела человека и более вероятным становится поражение жизненно значимых органов. Чем продолжительнее действие электрического тока, тем больше вероятность тяжелого или смертельного поражения.
  3. Вид тока. Наиболее опасен переменный ток с частотой 20-1000 Гц и напряжением до 300 В. При больших напряжениях более опасен постоянный ток.
  4. Индивидуальные свойства человеческого организма. Здоровые и физически крепкие люди легче переносят воздействие электрического тока, чем больные и ослабленные.
  5. Путь прохождения электрического тока по телу человека. Наиболее опасным является прохождение электрического тока вдоль оси тела, а так же через сердце, легкие и головной мозг. Путь тока в теле пострадавшего играет очень важную роль в исходе поражения. Если на пути электрического тока попадаются жизненно важные органы, то вероятность тяжкого исхода увеличивается.
  6. Условия окружающей среды. Риск поражения электрическим током и тяжесть последствий увеличиваются, к примеру, во влажной среде, во время дождя или снегопада.
  7. Площадь контакта человека с токоведущими частями.

Литература

  1. Харечко Ю.В. Анализ основополагающего понятия «электрическое оборудование».// Энергетик, № , 2012, С.
  2. ГОСТ Р ИСО 704-2010 Терминологическая работа. Принципы и методы
  3. ГОСТ 2.101-68. Единая система конструкторской документации Виды изделий.
  4. ГОСТ Р 54149 — 2010. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.

В разных стандартах на месте точек использованы слова оборудование, изделие, электротехническое изделие

Термин «электрооборудование» представляет собой дериват от термина «электрическое оборудование»

Дериват от этого термина – «электроустановка».

3262

Закладки

Последние публикации

Светодиодный прожектор LS-500-W-ХX

Сегодня, в 12:02

17

ГК «АНТРАКС» примет участие в международном форуме «Электрические сети»

Вчера, в 13:20

19

Новая котельная в Уфе будет работать в автоматизированном режиме

Вчера, в 12:24

25

Светодиодная лампа LS-T8 LED 30W- 1200 мм

15 марта в 15:23

46

Россети Центр» и «Россети Центр и Приволжье» проводят учения по повышению надежности электросетевого комплекса и борьбе с хищениями

15 марта в 13:36

41

IPPON: двадцать лет вместе с вами

15 марта в 09:35

50

Игорь Маковский поставил задачи по обеспечению безопасности и устойчивого функционирования электросетевого комплекса в новых реалиях

14 марта в 23:27

56

Курскэнерго оказало помощь детям Донбасса

14 марта в 12:00

53

В приграничный с Украиной Трубчевский РЭС филиала «Россети Центр Брянскэнерго» доставлен автогидроподъемник

11 марта в 22:41

78

Игорь Маковский: наша задача сохранить надежность электроснабжения и 45 тысяч рабочих мест в производственных организациях партнеров

10 марта в 22:56

88

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

223919

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

47714

Выключатели нагрузки на напряжение 6, 10 кВ

28 ноября 2011 в 10:00

37772

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

22809

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

20991

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

19380

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

17281

Правильная утилизация батареек

14 ноября 2012 в 10:00

14401

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

12512

Порядок переключений в электроустановках 0,4 — 10 кВ распределительных сетей

31 января 2012 в 10:00

12069

Щит автоматики (ЩА)

Это устройство будет отвечать за контроль сложных систем. Управление всеми элементами здесь будет происходить в автоматическом режиме.

Монтажный щит автоматики

Щит автоматики может оснащаться многими датчиками и контроллерами, которые будут отслеживать различные показатели. Исходя из этих показателей устройство самостоятельно может отключать и включать отдельные системы. Прибор может использоваться для разнообразных задач. При этом в каждом отдельном случае могут использоваться разнообразные модели щитков. Например, если вы используете ЩА для котла, то его также можно использовать и для вентиляционной системы.

Пленочные материалы

Большую область применения в электротехнике завоевали пленки и ленты, как электротехнические материалы. Свойства их отличаются от других диэлектриков гибкостью, достаточной механической прочностью и отличными изоляционными характеристиками. Толщина изделий варьируется в зависимости от материала:

  • пленки делают толщиной 6-255 мкм, ленты выпускают 0,2-3,1 мм;
  • полистирольные изделия в виде лент и пленок производят толщиной 20-110 мкм;
  • полиэтиленовые ленты делают толщиной 35-200 мкм, шириной от 250 до 1500 мм;
  • фторопластовые пленки изготавливают толщиной от 5 до 40 мкм, ширину предусматривают 10-210 мм.

Классификация электротехнических материалов из пленки позволяет выделить два вида: ориентированные и неориентированные пленки. Первый материал применяется наиболее часто.

Электричество. Основные понятия

2013-05-13

Теория 3 комментария

В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.

Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.

Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.

Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д

Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.

Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.

Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т.д

Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.

Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды «

». Основными параметрами переменного тока являются период, амплитуда и частота.

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.

Измерение тока проводится амперметром, который подключается последовательно нагрузке.

Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).

Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.

Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).

Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+. Рn

Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

Излучатель

Оптоэлектронные приборы и устройства оснащаются системами передачи сигнала. Их называют излучателями и в зависимости от типа, изделия разделяются следующим образом:

  • Лазерные и светодиоды. Такие элементы относятся к самым универсальными. Для них характерны высокие показатели коэффициента полезного действия, весьма узкий спектр луча (этот параметр также известен как квазихроматичность), достаточно широкий диапазон работы, поддержание четкого направления излучения и очень высокая скорость работы. Устройства с подобными излучателями работают очень долго и крайне надежно, отличаются небольшими размерами и отлично показывают себя в сфере микроэлектронных моделей.
  • Электролюминесцентные ячейки. Такой элемент конструкции показывает не особо высокий параметр качества преобразования и работает не слишком долго. При этом, устройствами весьма тяжело управлять. Однако именно они лучше всего подходят для фоторезисторов и могут использоваться для создания многоэлементных, многофункциональных структур. Тем не менее в силу своих недостатков, сейчас излучатели такого типа используются достаточно редко, только тогда, когда без них действительно нельзя обойтись.
  • Неоновые лампы. Отдача света этих моделей сравнительно невысока, а также они плохо выдерживают повреждения и работают недолго. Отличаются большими размерами. Используются крайне редко, в отдельных видах приборов.
  • Ламы накаливания. Такие излучатели применяются только в резисторном оборудовании и больше нигде.

Как следствие, светодиодные и лазерные модели оптимально подходят практически для всех сфер деятельности и лишь в некоторых областях, где по-другому нельзя, применяются другие варианты.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: