Электромагнитная индукция

Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля

Магнитное поле. Вектор магнитной индукции. Правило буравчика:

Магнитное поле: это особая форма, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами

  • Вектор магнитной индукции B : это силовая характеристика магнитного поля. Направление В это направление от южного полюса к северному полюсу магнитной стрелки, свободно устанавливающейся в магнитном поле (совпадает с направлением положительной нормали к замкнутому контуру с током).
  • Правило Буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора В.
  • Модуль вектора магнитной индукции В — это отношение максимальной силы Fm, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока I на длину этого участка Δl :

Сила Ампера, Закон Ампера, правило левой руки:

  • Сила Ампера: это сила, действующая на проводник с током, помещенный в магнитное поле
  • Закон Ампера: сила Ампера равна произведению модуля вектора магнитной индукции на силу тока, длину участка проводника Δl и на синус угла α между магнитной индукцией и участком проводника:
    • при этом, очевидно, что если ток (проводник) перпендикулярен вектору магнитной индукции, то
    • sin α = 1, и формула принимает вид:

Правило левой руки: если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению движения тока, то отогретый на 90 о большой палец покажет направление силы, действующей на отрезок проводника

Сила Лоренца, правило левой руки:

  • Сила Лоренца: это сила, действующая на движущуюся заряженную частицу со стороны магнитного поля:
    • при этом, очевидно, что если скорость частицы перпендикулярна вектору магнитной индукции,
    • то sin α = 1, и формула принимает вид:

Правило левой руки: если левую руку расположить так, чтобы составляющая вектора В перпендикулярная скорости заряда входила в ладонь, а четыре вытянутых пальца были направлены по движении положительного заряда (= против движения отрицательного заряда), то отогрутый на 90 о большой палец покажет направление действующей заряд силы Лоренца

Явление электромагнитной индукции, магнитный поток, поток магнитной индукции:

Электромагнитная индукция: это явление возникновения электрического тока в проводящем контуре, который либо покоится в переменном магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется

  • Магнитный поток (=поток магнитной индукции) : через поверхность площадью S это величина равная произведению модуля вектора магнитной индукции В на площадь и косинус угла между вектром В и нормалью к плоскости S:
    • при этом, очевидно, что если магнитная индукция перпендикулярна плоскости,
    • то cos α = 1, и формула принимает вид:

Правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного поля, которым он вызван.

Закон электромагнитной индукции:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взатой со знаком «-»

Самоиндукция:

Самоиндукция это частный случай электромагнитной индукции, при котором изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле:

Энергия магнитного поля тока:

Энергия магнитного поля тока: Энергия магнитного поля тока равна работе, которую должен совершить источник, чтобы создать данный ток

Консультации и техническая поддержка сайта: Zavarka Team

Исследования электромагнетизма

Явление электромагнитной индукции заключается в наведении ЭДС в проводнике под действием изменяющегося магнитного поля. Сегодня на этом принципе работают приборы, начиная трансформаторами и заканчивая варочными панелями. Первенство в области отдано Гансу Эрстеду, 21 апреля 1820 года заметившему действие замкнутой цепи на стрелку компаса. Подобные наблюдения публиковались в виде заметок Джованни Доменико Романьози в 1802 году.

Джованни Доменико Романьози

Заслуга датского учёного в привлечении к делу многих видных учёных. Итак, замечено, что стрелка отклоняется проводником с током, и осенью упомянутого года появился на свет первый гальванометр. Измерительный прибор на ниве электричества стал большим подспорьем многим. Попутно высказывались различные точки зрения, в частности, Волластон огласил, что неплохо заставить проводник с током вращаться непрерывно под действием магнита. В 20-е годы XIX века вокруг указанного вопроса царила эйфория, до этого магнетизм и электричество считались независимыми явлениями.

Оенью 1821 года задумку воплотил в жизнь Майкл Фарадей. Утверждают, что тогда на свет появился первый электрический двигатель. 12 сентября 1821 года в письме Гаспару де ла Риву Фарадей пишет:

«Я выяснил, что притяжения и отталкивания магнитной стрелки проводом с током – детская забава. Некая сила станет вращать непрерывно магнит под действием электрического тока. Я построил теоретические выкладки и сумел реализовать на практике».

Письмо к де ла Риву не стало случайностью. По мере становления на научном поприще Фарадей обрёл немало сторонников и единственного непримиримого противника… сэра Хампфри Дэви. Экспериментальная установка объявлена плагиатом идеи Волластона. Примерная конструкция:

  1. Серебряная чаша заполнена ртутью. Жидкий металл обладает хорошей электропроводностью и служит подвижным контактом.
  2. На дне чаши находится лепёшка воска, куда одним полюсом воткнут стержневой магнит. Второй возвышается над поверхностью ртути.
  3. С высоты свисает провод, подключённый к источнику. Конец его погружен в ртуть. Второй провод — возле края чаши.
  4. Если пропускать через замкнутую цепь постоянный электрический ток, провод начинает описывать по ртути круги. Центром вращения становится постоянный магнит.

Электромагнетизм

Конструкцию называют первым в мире электрическим двигателем. Но эффект электромагнитной индукции ещё не проявляется. Налицо взаимодействие двух полей, не более. Фарадей, кстати, не остановился, и сделал чашу, где провод неподвижный, а магнит двигается (образуя поверхность вращения – конус). Доказал, что нет принципиальной разницы между источниками поля. Потому индукция называется электромагнитной.

Немедленно Фарадея обвинили в плагиате и травили несколько месяцев, о чем он с горечью писал доверенным друзьям. В декабре 1821 года состоялась беседа с Волластоном, казалось, инцидент исчерпан, но… чуть позже группа учёных возобновила нападки, главой оппозиции стал сэр Хампфри Дэви. Смысл основных претензий заключался в противостоянии идее принятия Фарадея в члены Королевского общества. Это тяжким грузом давило на будущего открывателя закона электромагнитной индукции.

Переменный электрический ток

Если постоянный ток, как следует из названия — не меняет своих характеристик и направления в любой точке проводника, то переменный ток не отличается такими свойствами. Переменный ток — это ток, который с определённой периодичностью меняется по направлению, модулю и своей величине. На графике такой ток повторяет линию синуса с цикличными подъёмами и спадами.
Переменный ток очень широко распространён, т.к. его легко получать различными способами, а так же удобно и относительно просто передавать на большие расстояния. На электрических схемах традиционно обозначается значком с двумя волнистыми линиями.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Появление понятия магнитной индукции

На заре эпохи развития электричества люди стали исследовать сопутствующие явления. Так, Ханс Эрстед в 1819 году обнаружил: проводник с током создает вокруг круговое магнитное поле, Андре-Мари Ампер показал, что если направление движения зарядов совпадает, соседствующие проводники притягивают друг друга. Конец спорам положило создание закона Био-Савара (отечественные источники добавляют Лапласа), описывающего величину, направление магнитной индукции в точке пространства. Источники допускают оговорку касательно того, что исследования велись постоянного тока.

Взаимосвязь индукции и напряженности магнитного поля

Интегрирование (см. рисунок) идет по контуру с током. В формуле r подразумевает элементарную среднюю точку текущего отрезка, r0 – место пространства, для которого вычисляется магнитная индукция

Обратите внимание, в знаменателе дроби за интегралом перемножаются два вектора. Результатом выходит величина, направление которой определим по правилу буравчика (левой или правой руки)

Интегрирование ведется по элементу контура dr, r – средняя точка малого отреза полной длины. Идентичные разности в числителе и знаменателе сократим, остается вверху единичный вектор, задающий направление результата.

Формула показывает, как найти поле для контуров любой формы, проводя интегрирование по точкам. Современные численные методы лежат в основе действия компьютерных приложений (наподобие Maxwell 3D) по решению соответствующей задачи. Уравнение согласуется с законами Гаусса (магнитной индукции) и Ампера (циркуляции магнитного поля). Георг Ом использовал знания о компасе, выводя известную зависимость. Форму линий поля получим при помощи магнитных стрелок и силы оставления направления неизменным (см. заметку про закон Ома для участка цепи). Это будет картина магнитной индукции в пространстве, экспериментально подтвердившая закон Био-Савара-Лапласа.

Позволило сделанное Амперу в 1825 году показать: электрический ток в некоторых случаях является аналогом постоянного магнита. Появилась новая модель, которая лучше согласовывалась с действительностью, нежели схема диполей Пуассона. Подобная абстракция объясняла отсутствие в природе изолированных магнитных полюсов. По современным представлениям, кусок стали намагничивается, оттого что диполи элементарных частиц и молекул приобретают упорядоченность. На этом основаны контуры размагничивания сердечников трансформаторов, которые перед выключением питания вызывают затухающие колебания тока. В результате эффект упорядоченности размывается, выраженные свойства пропадают.

Спин электрона

Наличие магнитного момента объясняется существованием спинов (понятие введено в 20-х годах XX века) – угловой момент частиц микромира. Реальные, не абстрактные вещи, существование подтверждено экспериментально (Штерн-Герлах). Спин является векторной величиной, одинаковой для всех частиц одного типа (например, электронов), описывается специальным квантовым числом. В СИ единицей измерений служит Дж с, как и для другого углового момента (постоянной Планка). Иногда применяется упрощенная безразмерная запись. Постоянная Планка опускается. Указывается просто спиновое квантовое число (s, ms).

Благодаря наличию спина, элементарная частица обзаводится магнитным моментом, вычисляемым по формуле: в числителе произведение спинового углового момента на заряд частицы и g-фактор (постоянные, приводимые в различных справочниках для тех или иных элементарных частиц); в знаменателе – удвоенная масса элементарной частицы. Как видите, поддается учету, максимальную намагниченность материала в заданных условиях можно заранее рассчитать. Настоящим триумфом квантовой электродинамики явилось предсказание g-факторов для некоторых элементарных частиц.

Открытие Майклом Фарадеем в 1831 году генерации переменным магнитным полем кругового электрического показало: два явления тесно связаны, что явилось предпосылкой созданию (четырех) уравнений Максвелла, частным случаем которых являются большинство формул в этой области, считая упомянутые выше. Исследования шли своим чередом, но несколько разными путями. Интеграцию произвел лорд Кельвин, известный как Вильям Томпсон, который показал наличие H (напряженность) и B магнитной индукции, первая характеризует модель Пуассона, вторая – Ампера.

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 527

«Физика — 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.
В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.
Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Следующая страница «Электромагнитное поле. Электродинамический микрофон»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

вихревые токи

Электрические проводники, движущиеся через постоянное магнитное поле, или неподвижные проводники в изменяющемся магнитном поле, будут иметь круговые токи, индуцируемые внутри них за счет индукции, называемые вихревыми токами . Вихревые токи протекают в замкнутых контурах в плоскостях, перпендикулярных магнитному полю. Они находят полезное применение в вихретоковых тормозах и системах индукционного нагрева. Однако вихревые токи, индуцированные в металлических магнитных сердечниках трансформаторов, а также двигателей и генераторов переменного тока, нежелательны, поскольку они рассеивают энергию (называемую потерями в сердечнике ) в виде тепла в сопротивлении металла. В сердечниках этих устройств используется ряд методов снижения вихревых токов:

  • Ядра низкой частоты переменного тока электромагниты и трансформаторы, вместо того чтобы быть твердым металлом, часто изготавливаются из стопок металлических листов, называемых слоистые , разделенных непроводящих покрытий. Эти тонкие пластины уменьшают нежелательные паразитные вихревые токи, как описано ниже.
  • Катушки индуктивности и трансформаторы, используемые на более высоких частотах, часто имеют магнитные сердечники, изготовленные из непроводящих магнитных материалов, таких как феррит или железный порошок, скрепленные связующим из смолы.

Электромагнитные ламинаты

Вихревые токи возникают, когда твердая металлическая масса вращается в магнитном поле, поскольку внешняя часть металла прорезает больше магнитных силовых линий, чем внутренняя часть; следовательно, индуцированная электродвижущая сила неоднородна; это имеет тенденцию вызывать электрические токи между точками наибольшего и наименьшего потенциала. Вихревые токи потребляют значительное количество энергии и часто вызывают опасное повышение температуры.

В этом примере показаны только пять пластин или пластин, чтобы показать подразделение вихревых токов. На практике количество наслоений или перфораций составляет от 40 до 66 на дюйм (от 16 до 26 на сантиметр), что снижает потери на вихревые токи примерно до одного процента. Хотя пластины могут быть разделены изоляцией, напряжение настолько низкое, что естественного ржавого / оксидного покрытия пластин достаточно для предотвращения протекания тока через ламинаты.

Это ротор диаметром примерно 20 мм от двигателя постоянного тока, используемого в проигрывателе компакт-дисков

Обратите внимание на многослойность полюсных наконечников электромагнита, используемых для ограничения паразитных индуктивных потерь.

Паразитная индукция внутри проводников

На этом рисунке сплошной медный стержневой провод на вращающемся якоре как раз проходит под наконечником полюсного наконечника N полевого магнита

Обратите внимание на неравномерное распределение силовых линий по медному стержню. Магнитное поле более сконцентрировано и, следовательно, сильнее на левом крае медного стержня (a, b), в то время как поле слабее на правом крае (c, d)

Поскольку два края стержня движутся с одинаковой скоростью, эта разница в напряженности поля на стержне создает завихрения или текущие водовороты внутри медного стержня.

Сильноточные устройства промышленной частоты, такие как электродвигатели, генераторы и трансформаторы, используют несколько параллельных проводов небольшого диаметра для разрушения вихревых потоков, которые могут образовываться в крупных твердых проводниках. Тот же принцип применяется к трансформаторам, используемым на частоте выше мощности, например, к трансформаторам, используемым в импульсных источниках питания и трансформаторах связи промежуточной частоты радиоприемников.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Электромагнитная индукция

Возникновение электрического тока в замкнутом проводнике (замкнутой цепи) возможно при помощи обратного преобразования из магнитного потока в электрический. Это явление называется электромагнитной индукцией. Возникновение электрического тока в замкнутой цепи возможно только при условии воздействия на проводник в замкнутой цепи переменного/изменяющего магнитного поля. Такие изменения магнитного потока можно представить изменением числа магнитных линий, которые пронизывают контур с током (например катушку). Самый простой случай возникновения электромагнитной индукции в проводнике — это физическое движение/перемещение магнита относительно замкнутого проводника, в котором регистрируется электрический ток во время такого движения магнита. Если рассматривать явление электромагнитной индукции тока на примере классической катушки с намотанным на неё проводником, то полученный таким образом индукционный ток в следствие движения магнита внутри катушки будет зависеть от:

  • Количества витков катушки
  • Скорости изменения магнитного потока
  • Свойств и типа (материала) самого магнита

Интересная и важная особенность, сопровождающая явление электромагнитной индукции тока: когда магнит движется в катушке с проводником, то в зависимости от направления движения будет изменяться и направление течения тока в проводнике. Величина выработанного тока в случае электромагнитной индукции зависит от свойств магнитного поля. Поскольку электрический ток появляется в результате действия электрического поля, то в случае электромагнитной индукции происходит процесс образования электрического поля из магнитного с помощью магнитного потока.

Магнитный поток отвечает за количество направленных магнитных линий, проходящих через ограниченную площадь или контур. Величина обозначается символом Sl (1 вебер ). Величина магнитного потока определяется количеством магнитных линий в нём. Магнитный поток всегда характеризует весь магнит целиком, а не какое-то его отдельное проявление в определённой точке, магнитный поток можно считать энергетическим потенциалом отдельно взятого магнита.
Магнитный поток и впоследствии вырабатываемый в результате электромагнитной индукции ток зависит от некоторых закономерностей:

  • Магнитный поток прямо пропорционален интенсивности магнитной индукции.

    (где Sl — магнитный поток (1 вебер ), B — магнитная индукция (1 Тесла ))

  • Магнитный поток прямо пропорционален площади поверхности, через которую проходят линии магнитной индукции.

    (где Sl — магнитный поток (1 вебер ), S — площадь поверхности)

  • Воздействие магнитного потока зависит от угла расположения площади поверхности/контура по отношению к источнику магнитного поля.

  • Сила полученного в результате электромагнитной индукции тока напрямую зависит от скорости изменения магнитного потока.

    (где I — сила тока (1 ампер ), Sl — изменяемый магнитный поток (1 вебер ), t — время изменения магнитного потока (1 секунда (с)))

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Закон полного тока

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB

dB = µ0 *I*dl*sin α /4*π*r2,

где

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

В = µ* µ0*2*I/4*π*r.

Для кругового движения она выглядит так:

В = µ*µ0*I/4*π*r.

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

B→= B1→+ B2→+ B3→… + Bn→

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В СГС магнитный поток измеряется в максвеллах (Мкс):

108 Мкс = 1 Вб.

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

φ = |B*S| = B*S*cosα,

где

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900)

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: