Источник переменного тока внутри радиосхем
В подавляющем большинстве случаев внутри схем присутствует постоянный ток. Обычно на входе в любое устройство переменный ток, поступающий из общей сети, проходит выпрямление. Однако в редких случаях может потребоваться наличие переменного тока внутри устройства. Тогда используется специальная схема. Пример одной из них представлен на рисунке ниже.
Принцип работы такой схемы построен на применении обратной связи и использовании регулятора напряжения. Ток нагрузки может протекать как в одном, так и в другом направлении. Выходной ток находится в промежутке от −10 мА до +10 мА. На вход подается напряжение −10 В или +10 В.
Правильный подбор резисторов R1,…,R6 позволяет снизить погрешность выходных параметров. Операционный усилитель должен быть рассчитан на малые токи смещения и выходные токи. Транзисторы VT1 и VT2 можно брать такие, которые рассчитаны на напряжение на коллекторе до 30 В и силу тока 20–150 мА.
Увидеть обозначение источника переменного тока на схеме с подключенной нагрузкой можно на картинке ниже, где изображено устройство для защиты от перенапряжения:
Но как же переменный ток попадает в наши квартиры, типовую схему подключения жилого дома можно увидеть на схеме ниже:
Метод узловых (потенциалов) напряжений
ТОЭ › Методы расчета цепей постоянного тока
![]()
При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.
Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие. В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.
Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов)
Метод узловых потенциалов примеры решения задач
Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.
Рис.1. Схема постоянного тока
Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.
Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4 φ4 = 0.
Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.
В общем виде система имеет вид:
Использованные в этой системе уравнений буквенно-цифровые обозначения
имеют следующий смысл:
– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае
– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае
– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае
– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:
– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:
Аналогично находятся и остальные проводимости:
J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае
Аналогично
В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:
Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:
![]()
В результате получены следующие значения потенциалов в узлах цепи:
Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.
В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что
Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.
Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.
![]()
Рис.2. Моделирование в Multisim
Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.
Как элементы электрической цепи обозначают на схемах
Для наглядности способы соединения элементов изображают графически. Такие чертежи называют принципиальными электрическими схемами (рис. 6). Чтобы не рисовать элементы в подробностях, для них придумали упрощенные обозначения.
![]()
Рис. 6. Пример цепи и ее электрической схемы
Обозначение каждого элемента стандартизировали. Благодаря стандартам, схема цепи, составленная в какой-либо стране, может быть прочитана и воспроизведена в другой части мира.
На рисунке 7 приведены обозначения, принятые в странах СНГ и некоторых странах Европы.
![]()
Рис. 7. Условные обозначения некоторых элементов электрической цепи
Рядом с графическим символом указывают буквенные обозначения. Элементы на схемах принято обозначать латинскими буквами так:
- гальваническую батарею GB или B. В качестве источника тока для компактных электронных устройств часто применяют аккумуляторы, или батарейки;
- выключатель – SA, кнопка — SB; Для кнопок и выключателей иногда используют только одну букву S;
- проводник, обладающий сопротивлением – R;
- соединительные клеммы — буквами XT;
- символом FU — плавкий предохранитель. Он служит для защиты схемы и из строя первым, как только ток превысит определенный порог, указанный на таком предохранителе;
- нагревательный элемент электроплит и других обогревателей — символом EK;
- лампу накаливания – HL или HA;
- разъем вилка-розетка – XS;
- электродвигатель постоянного тока – M;
- электромеханический звонок – HA.
Часто бывает так, что на схемах присутствуют элементы, обозначаемые одинаковыми графическими значками. Чтобы различать их, дополнительно вводят цифровую нумерацию (рис. 8).
![]()
Рис. 8. Для нескольких одинаковых элементов цепи применяют цифровую нумерацию
Например, первую лампу обозначают HL1, вторую – HL2, и так далее.
Примечание: В Северной Америке и Японии графические обозначения некоторых элементов отличаются.
Существует еще одно, полезное для составителя схем, правило.
Благодаря такому правилу, одну и ту же схему можно нарисовать различными способами (рис. 9).
![]()
Рис. 9. Элементы цепи можно передвигать по схеме, если это не нарушает соединений
История открытия переменного тока
Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.
Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.
![]()
Школьный вариант трактовки переменного и постоянного тока
Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природныедвух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:
- Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть – замалчивает работы с переменным током. Подобно Георгу Ому, ученый – талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
- Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.
Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.
Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.
Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.
![]()
Никола Тесла изучал электрические машины
Основные методы расчета электрических цепей постоянного тока
Электрические цепи постоянного тока можно рассчитать с применением одного из следующих способов:
- с использованием законов Ома и Кирхгофа;
- методом контурных токов;
- с использованием эквивалентных преобразований;
- методом наложения.
Рассмотрим каждый из способов.
Законы Ома и Кирхгофа находят широкое применение в физике, в частности при расчете электрических цепей. При этом в цепи выделяют отдельные контуры и выбирают направление их обхода. Далее записывают уравнения законов Кирхгофа.
По первому закону сумма токов, входящих и выходящих из узла, равна нулю.
Всего составляют (n-1) уравнений, где n — количество узлов в цепи.
Знаки токов выбирают из следующего условия: токи, входящие в узел, имеют знак «+», токи, выходящие из узла, — знак «–».
Затем записывают уравнения по второму закону Кирхгофа. Напряжения выражают через силу тока и сопротивление согласно закону Ома для участка цепи. При этом ЭДС и ток считают положительными, если их направления совпадают с направлением обхода контура.
После составления системы уравнений выполняют подсчет токов, протекающих в цепи. Для самостоятельной проверки выполненной работы составляют баланс мощностей цепи.
Метод контурных токов может значительно упростить расчет токов в цепи. В этом случае принимают, что в каждом контуре протекает свой ток. На основании этого предположения записывают токи в ветвях через контурные токи, как это показано на следующем примере. Токи в смежных ветвях находят как сумму соседних контурных токов с учетом их направлений.
Затем записывают уравнения по второму закону Кирхгофа. В уравнения токи в ветвях записывают в виде суммы контурных токов. Таким образом, неизвестными параметрами становятся контурные токи, вычислив которые, определяют ток в каждой ветви цепи.
Эквивалентное преобразование используют в цепях с одним источником и несколькими приемниками. Преобразование заключается в том, что параллельно или последовательно соединенные резисторы можно заменить одним. Происходит «свертывание» цепи к более простой.
При замене сопротивлений на эквивалентное необходимо учитывать, что сила тока и напряжение должны оставаться неизменными, то есть I=Iэкв и U=Uэкв. Для этого используют следующие свойства последовательного соединения:
и параллельного соединения:
Метод наложения применяют только для линейных электрических цепей. При использовании этого метода цепь делится на несколько составных схем, в каждой из которых оставляют только один источник энергии.
Количество таких схем определяют как сумму числа источников тока и напряжения. Источники напряжения заменяют короткозамкнутой перемычкой, а источник тока — разрывом цепи.
Токи в составных цепях вычисляют любым возможным способом, затем находят токи в ветвях исходной цепи как сумму найденных составных токов. При суммировании составных токов необходимо учитывать их знаки.
Где используется переменный ток
Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:
- Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
- КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
- При помощи постоянного тока действуют магниты. К примеру, домофонов.
- Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
- Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.
В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы – неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.
Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.
Чем обосновано разнообразие электротоков
У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.
В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:
- задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
- преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
- поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
- двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.
Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:
- чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
- питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
- постоянное напряжение значительно безопаснее для человека, чем переменное.
Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.
Разновидности диодов
Основным элементом выпрямляющего диода является полупроводник. Чаще всего в качестве него применяется кристалл кремния или германия. Кремневые диоды используются чаще, чем германиевые. Это связано с тем, что последние отличаются более высокой величиной обратных токов, что существенно ограничивает допустимую величину обратного напряжения. Для германиевых полупроводников этот показатель не превышает 400 Вольт. У кремниевых диодов максимальное обратное напряжение может достигать 1500 Вольт.
Кроме того, кремниевые полупроводники отличаются более высокой рабочей температурой. Но с этим достоинством связан и существенный минус данных радиоэлементов. Если обратное напряжение приводит к их пробою, то он носит тепловой характер. Это означает, что пробитый кремниевый выпрямитель практически всегда необходимо заменять новым.
Преимуществом германиевых считается небольшое падение напряжения при прямом электротоке.
В зависимости от технологии изготовления полупроводниковые диоды делятся на точечные и плоскостные. Первые состоят из небольшой пластины n-типа и стальной иглы, создающей в месте контакта p-n переход. Основными конструктивными элементами плоскостных полупроводниковых диодов являются две соединенные вместе пластины разной электропроводности.
Максимально допустимый прямой ток определяет мощность выпрямительных диодов. Исходя из этой характеристики, их принято делить на:
- Слаботочные. Они отличаются небольшими габаритами и малым весом. Выпускаются преимущественно в пластмассовых корпусах. Выпрямляемый ток не превышает 0.3 Ампер.
- Диоды средней мощности. Их корпуса изготавливаются из металла, а на одном из выводов (катоде) присутствует резьба, с помощью которой радиоэлемент можно надежно зафиксировать на радиаторе, используемом для отвода тепла. Способны выпрямлять переменный ток от 0.3 до 10 Ампер.
- Силовые полупроводниковые выпрямители. Рассчитаны на прямой ток, превышающий 10 А. Выпускаются в металлокерамических или металлостеклянных корпусах таблеточного или штыревого типа.
Существуют еще такие разновидности выпрямительных диодов, как:
- Импульсные. Их используют в маломощных электронных схемах. Главной их особенностью является небольшое время, затрачиваемое на переход от закрытого состояния к открытому, и наоборот. Это примерно 100 мкс.
- Обращенные. При обратном включении они оказывают небольшое сопротивление проходящему току и намного большее при прямом включении. Обращенные диоды предназначены в основном для выпрямления небольших сигналов с амплитудой напряжения не более 1 Вольта.
- Выпрямители Шоттки. Они отличаются небольшим сопротивлением, поэтому используются для выпрямления значительных токов, достигающих десятки ампер. Внутри выпрямителей Шоттки не накапливается тепловая энергия, поэтому отсутствует и рассасывание неосновных носителей электрозарядов.
- Стабилитроны. Способны сохранять все свои рабочие характеристики даже в режиме электрического пробоя. За рубежом их называют диодами Зенера.
- Диодный мост. Данная схема собирается из четырех элементов. Используется с целью улучшения качества преобразования переменного тока в постоянный. Отличается тем, что способен пропускать ток на протяжении каждого полупериода. Мосты выпускаются в виде устройства, заключенного в корпус из пластика.
Все виды выпрямительных диодов отличаются внешним видом, но их выбор упрощает соответствующее обозначение, нанесенное на корпус. Каталоги с маркировкой и УГО данных полупроводниковых элементов представлены в специальном справочнике. Следует отметить, что маркировка импортных диодов отличается от отечественных. Буквенно-цифровое обозначение отечественных диодов регламентирует ОСТ 11366.919-81. Расшифровка маркировки согласно этому документу представлена на рисунке ниже.
Следовательно, если на корпусе имеется маркировка КД202А, то это будет кремниевый выпрямительный диод средней мощности исполнения А.
Существуют требования и относительно условных графических изображений диодов на схемах.
Как найти активную, реактивную и полную мощность
Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.
В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.
При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.
Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в ваттах, реактивная мощность измеряется в вар – вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.
Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).
![]()
Активная, реактивная и полная мощность. Что это такое, на примере наглядной аналогии.
Что такое активная и реактивная электроэнергия, мощность
Как найти реактивную мощность
Активное и реактивное сопротивление
Компенсация реактивной мощности в электрических сетях
Активное и индуктивное сопротивление кабелей – таблица
Онлайн калькулятор расчета тока по мощности






























