Электрическое поле

Воздействие электрического поля на жизнь и здоровье человека

Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.

Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.

Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.

Еще рекомендую посмотреть лекцию профессора на тему «Электрическое поле»:

Потенциальность электростатического поля

Электрическое поле с напряженностью ​ \( \vec \) ​ при перемещении заряда ​ \( q \) ​ совершает работу. Работа ​ \( A \) ​ электростатического поля вычисляется по формуле:

где ​ \( d \) ​ – расстояние, на которое перемещается заряд, ​ \( \alpha \) ​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно! Эта формула применима для нахождения работы только в однородном электростатическом поле. Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно! Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​ \( W \) ​, так как буквой ​ \( E \) ​ обозначают напряженность поля:

Потенциальная энергия заряда ​ \( q \) ​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​ \( \vec \) ​ – напряженность электрического поля, ​ \( q \) ​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Условия равновесного состояния заряда в проводнике

Можно представить пару точечных зарядов, модули которых одинаковы, а знаки противоположны. Такие заряженные частицы +q и –q отдалены друг от друга на некоторое расстояние. Они создают электростатическое поле, в котором наблюдают системы с взаимно перпендикулярными силовыми линиями и эквипотенциальными поверхностями. В качестве одной из таких поверхностей представлена плоскость. Она пролегает сквозь середину отрезка, который соединяет заряженные частицы. Плоскость обладает нулевым потенциалом, так как, исходя из принципа суперпозиции, если точки удалены на равные расстояния r1 = r2 от заряженных частиц, то:

\(\varphi =\varphi _{1}+\varphi _{2}=k\frac{q}{r_{1}}-k\frac{q}{r_{2}}=0\)

Далее необходимо совместить плоскость и тонкую проводящую пластину с последующим ее заземлением.

Можно наблюдать, что поле при этом сохранит стабильность, так как все точки пластины обладают одинаковым потенциалом, равным нулю. При исключении заряда –q, который наблюдается за проводящей пластиной, поле перед ней не изменится. Исходя из этого, можно сделать вывод о том, что при приближении тонкой проводящей заземленной пластины к точечному заряду электрическое поле, которое создают реальный заряд и его мнимое изображение противоположного знака в пластине, будет совпадать с полем в зеркале. Способ электростатических изображений не является универсальным методом, однако с его помощью можно упростить решение многих задач.

Определение и формула напряжённости магнитного поля

Вокруг постоянного магнита или проводника с протекающим по нему электрическим током всегда присутствует магнитное поле. Эта одна из форм существования электромагнитного поля, естественного или искусственного происхождения. Как и всякая физическая величина, она имеет свои характеристики, одной из которых выступает напряжённость магнитного поля.

Из курса физики известно, что напряжённость магнитного поля H – это векторная (не скалярная, то есть определённым образом направленная в пространстве) величина, являющейся геометрической разницей между векторами магнитной индукции B и вектором намагниченности M.

Небольшое пояснение. Магнитная индукция B – это силовая векторная характеристика магнитного поля в конкретной точке пространства, которая характеризует силу воздействия на электрический заряд определённой величины, движущийся в этом поле.

Намагниченность M – это векторный показатель, демонстрирующий магнитное состояние тела, являющегося источником возникшего магнитного поля. Формулы, описывающие величину напряжённости магнитного поля в разных системах единиц измерения, выглядят следующим образом:

В системе СИ (Международной системе единиц):

H = 1/μ·B – M,

где μ – магнитная постоянная, равная 4π10−7 Гн/м, или менее точно 1,2566370614 10-6 Н/А2. Единицей измерения напряжённости здесь выступает ампер на метр. 1А/м = 4π/1000Э = 0,01256637Э.

В системе СГС (сантиметр-грамм-секунда):

H = B – 4 πM.

Здесь единицей измерения служит эрстед (Э). 1Э = 1000/4πА/м = 79,5775 А/м. При этом надо в обязательном порядке учитывать, что намагниченность зависит от магнитной проницаемости среды следующим образом:

M = ((μ-1)/4πμ)B, где μ – магнитная проницаемость, составляющая:

  • для диамагнетиков (стекло, медь, вода) – 0,99999;
  • для парамагнетиков (алюминий, воздух, кислород) – 1,0000;
  • для ферромагнетиков: никель – 1100; железо – 8000.

Электростатическое поле

Такой вид поля создается неподвижными зарядами. Подразумевается поддержание определенной напряженности, не меняющейся на протяжении определенного времени.

Индукция магнитного поля

Чтобы переместить заряд из первой точки во вторую, нужно учесть изменение расстояния r1 и r2. Понятно, что в данном случае не имеет значения траектория пути. В итоговой формуле нет косинуса угла. Кроме дистанции, остались только параметры потенциала вместе с постоянными величинами (π, e0).

Нижние рисунки демонстрируют равенство работ по перемещению заряда из «А» в «Б» по разным путям. В правой части показан пример с возвращением в исходную точку. Несмотря на отличия по отдельным отрезкам траектории (А1≠А2≠А3), итоговый результат будет равен нулю.

К сведению. Приведенные отношения характерны для статического поля в идеальных условиях. Изменяющиеся во времени силовые параметры и внешние воздействия оказывают влияние на итоговый результат (расчетный и практический).

Работа по передвижению положительного заряда

Перемещение заряженной частицы из области с положительным в точку с отрицательным потенциалом совершается при наличии электрического поля. Передвижение выполняется с ускорением.

Потоком называют количество линий, проходящих через определенную область поля. Это понятие условно, так как до сих пор в научной среде спорят о природе электричества. Тем не менее, соответствующее физическое воздействие достаточно точно описано формулами. Как показано на примерах, его используют при создании разных устройств и деталей.

Положительный заряд перемещается от высокого к низкому потенциалу. В каждой точке траектории можно определить силу воздействия. Для повышения точности вычислений в некоторых ситуациях приходится учитывать проводимость среды. Расчет типовых электрических цепей выполняют с помощью закона Ома.

Причины появления

Оно может возникать на изолированных проводниках, на поверхности или в объеме диэлектриков. Трение, возникающее при соприкосновении двух веществ разного рода, ведет к электризации диэлектриков. Это происходит из-за различных молекулярных и атомных сил. Можно сказать, что статическое электричество получается при нарушении их равновесия благодаря приобретению или потере электрона.

Будет интересно Что такое мостовой выпрямитель и как он устроен

Объяснить этот процесс очень просто. Состояние равновесия атома достигается при наличии одинакового числа протонов и электронов. Перемещаясь от одного атома к другому, электроны формируют положительные и отрицательные ионы.

При их дисбалансе и возникает статическое электричество. Протоны и электроны имеют одинаковый электрический заряд, но с разной полярностью. Он измеряется в кулонах и определяет количество электричества, которое проходит за 1 сек. в поперечном сечении проводника. Статический заряд прямо пропорционален числу неустойчивых ионов, то есть дефициту или избытку электронов.


Природное статическое напряжение

Статическое электричество способно генерироваться. Это происходит за счет отсутствия у положительного иона одного электрона, вследствие чего он может принимать от отрицательной частицы свободный электрон. В свою очередь отрицательный ион может представлять собой атом либо молекулу, обладающую большим количеством электронов. В этих случаях имеется один электрон, который способен нейтрализовать положительный заряд.

Основными причинами, влекущими за собой возникновение статического электричества, являются:

  • отдаление или контакт двух материалов;
  • быстрые температурные перепады;
  • УФ-излучение, радиация, сильные электрические поля;
  • операции, производимые путем нарезания (раскроечные станки или бумагорезальные машины);
  • наведение, то есть возникновение электрического поля, вызванного статическим зарядом.

Явление, называемое статическим электричеством, встречается повсеместно в быту. Электростатический разряд происходит при очень высоких показателях напряжения, но при низких токах. При этом не возникает опасности для человека. Несмотря на это, защита от статического электричества необходима, так как оно может быть опасным для многих элементов электроприборов. От него очень часто страдают транзисторы, микропроцессоры, схемы и т.д.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц

Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Изображение электрических полей с помощью эквипотенциальных поверхностей

Силовые линии условны только отчасти. По стрелке компаса можно определить направление силового вектора в каждой точке. Если построить касательные по точкам, будет сформирована траектория определенного участка. Близкое расположение отдельных линий свидетельствует о большей напряженности.

Если соединить точки с одинаковыми потенциалами, получатся эквипотенциальные поверхности. Они перпендикулярно пересекают силовые линии. Общая картинка наглядно демонстрирует распределение основных параметров поля.

Работа электростатического поля при перемещении заряда по линиям эквипотенциальных поверхностей выполняется без дополнительных силовых воздействий. Эту особенность можно использовать для бесконтактного ограничения траектории движения элементов механических узлов. Пример с точечным зарядом показывает, что циркуляция вектора напряженности по замкнутой траектории равна нулю.

Следует отметить! Полезная работа может выполняться в прямом и обратном направлении. С учетом базового принципа сохранения энергии можно сделать правильный вывод о накоплении потенциала в ходе этого процесса. Практическое применение – конденсатор в колебательном контуре.

В данной публикации подробно рассмотрена электростатика. Необходимо помнить о том, что нужны соответствующие коррекции при рассмотрении динамических процессов.

Закон Кулона. Принцип суперпозиции

Взаимодействие неподвижных электрических зарядов изучает раздел физики названный электростатикой, в основе которой фактически лежит закон Кулона, который был выведен на основе многочисленных опытов. Данный закон, также как и единица электрического заряда были названы в честь французского физика Шарля Кулона.

Кулон проводя свои опыты установил, что сила взаимодействия между двумя небольшими электрическим зарядами подчиняется следующим правилам:

  • сила пропорциональна величине каждого заряда;
  • сила обратно пропорциональна квадрату расстояний между ними;
  • направление действия силы направленно вдоль прямой соединяющей заряды;
  • сила представляет собой притяжение, если тела заряжены противоположно, и отталкивание в случае одноимённых зарядов.

Таким образом, закон Кулона выражается следующей формулой

где q1, q2 – величина электрических зарядов,

r – расстояние между двумя зарядами,

k – коэффициент пропорциональности, равный k = 1/(4πε0) = 9 * 109 Кл2/(Н*м2), где ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Кл2/(Н*м2).

Замечу, что ранее электрическая постоянная ε0 называлась диэлектрической постоянной или диэлектрической проницаемостью вакуума.

Рисунок иллюстрирующий закон Кулона.

Закон Кулона проявляется, нет только при взаимодействии двух зарядов, но и что чаще встречается системы из нескольких зарядов. В этом случае закон Кулона дополняется ещё одним существенным фактором, который называется «принципом наложения» или принципом суперпозиции.

В основе принципа суперпозиции лежит два правила:

  • воздействие на заряженную частицу нескольких сил есть векторная сумма воздействий этих сил;
  • любое сложное движение состоит из нескольких простых движений.

Принцип суперпозиции, на мой взгляд, проще всего изобразить графически

Изображение, поясняющее принцип суперпозиции.

На рисунке показаны три заряда: -q1, +q2, +q3. Для того чтобы вычислить силу Fобщ, которая действует на заряд -q1, необходимо вычислить по закону Кулона силы взаимодействия F1 и F2 между -q1, +q2 и -q1, +q3. Затем получившиеся силы сложить по правилу сложения векторов. В данном случае Fобщ вычисляется как диагональ параллелограмма по следующему выражению

где α – угол между векторами F1 и F2.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.


Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».


Клетка Фарадея

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

В чем отличие проводника от диэлектрика

В отличие от диэлектрических веществ, материалы, которые способны проводить электричество, обладают высокой концентрацией свободных носителей заряда. Для металлов характерно присутствие свободных электронов, которые по сравнению со связанными электронами, перемещаются по всему объему вещества.

Образование свободных электронов связано с тем, что атомы металлических веществ обладают валентными электронами, слабо взаимодействующими с ядрами и достаточно просто теряющими связи с ними. Таким образом, металл является кристаллической решеткой, включающей узлы с положительными ионами, которые окружены отрицательным электронным газом.

 
Пример

В качестве примера можно поместить металлический предмет в электрическое поле, напряженность которого равна E0.

Вначале наблюдается образование поля с такой же напряженностью \(E_{0}\) внутри проводника. Данное поле будет воздействовать на свободные электроны. В результате заряды приходят в движение в противоположном направлении полю \(E_{0} \). В процессе распределения электронов образуется внутреннее поле $$E_{‘}$$. Его направление будет противоположно внешнему полю $$E_{0}$$. Перемещение электронов прекращается в том случае, когда суммарное поле внутри материала примет нулевое значение:

\(E=E_{0}-E_{‘}=0\)

Данное равенство подтверждено многочисленными практическими опытами. Известно, что с помощью замкнутой проводящей оболочки целиком экранируется находящаяся внутри нее область от внешних электрических полей. Таким образом, образуется электростатическая защита.

Природа явления

Глазами электрическое поле увидеть невозможно: его можно обнаружить по его действию на заряженные тела. При этом такое воздействие не требует прямого касания носителей потенциала, но имеет силовую природу. Так, наэлектризованные волосы будут тянуться к другим предметам.

Наблюдение за электрическими полями показывает, что они работают аналогично гравитационным. Описывается это законом Кулона, который в общем виде выглядит так:

F = q₁ q₂ / 4 π ε ε₀ r ²,

где q₁ и q₂ – величины зарядов в кулонах, ε – диэлектрическая проницаемость среды, ε₀ – электрическая постоянная, равная 8,854*10⁻¹² Ф/м, r — расстояние между зарядами в метрах, а F — сила, с которой заряды взаимодействуют, в ньютонах.

Таким образом, чем дальше от центра, тем меньше будет ощущаться воздействие поля.

Отобразить поле графически можно в виде силовых линий. Их расположение будет зависеть от геометрических характеристик носителя. Различают два вида полей:

  1. Однородное, когда силовые линии расположены параллельно друг другу. Идеальный случай — это бесконечные параллельные заряженные пластины.
  2. Неоднородное, частный случай которого — поле вокруг точечного или сферического заряда; его силовые линии расходятся радиально от центра, если он положительный, и к центру, если отрицательный.

Таковы основные свойства электрического поля. Чтобы ознакомиться с его характеристиками, стоит рассмотреть простейший вариант — электростатическое, которое формируется постоянными и неподвижными зарядами. Для удобства они будут точечными, чтобы их контуры не усложняли расчеты. Пробный заряд, который тоже будет фигурировать в дальнейшем, тоже будет точечным и бесконечно малым.

https://youtube.com/watch?v=kD-6e7fgvmY

Потенциал

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система «заряд — электростатическое поле» обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

\(~A_{12} = -(W_{2} — W_{1}) = W_{1} — W_{2} . \)

Сравнивая полученное выражение с уравнением 1, можно сделать вывод, что

\(~W = -q \cdot E \cdot x, \)

где x

— координата заряда на ось 0Х, направленную вдоль силовой линии (см. рис. 1). Так как координата заряда зависит от выбора системы отсчета, то и потенциальная энергия заряда так же зависит от выбора системы отсчета.

Если W

2 = 0, то в каждой точке электростатического поля потенциальная энергия зарядаq 0 равна работе, которая была бы совершена при перемещении зарядаq 0 из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q

. Будем помещать в некоторую точку этого поля различные пробные зарядыq 0. Потенциальная энергия их различна, но отношение \(~\dfrac{W}{q_0} = \operatorname{const}\) для данной точки поля и служит характеристикой поля, называемойпотенциалом поля φ в данной точке.

Потенциал электростатического поля φ в данной точке пространства — скалярная физическая величина, равная отношению потенциальной энергии W , которой обладает точечный зарядq в данной точке пространства, к величине этого заряда:

\(~\varphi = \dfrac{W}{q} .\) Единицей потенциала в СИ является вольт

(В): 1 В = 1 Дж/Кл.

Потенциал — это энергетическая характеристика поля.

Свойства потенциала.

Потенциал, как и потенциальная энергия заряда, зависит от выбора системы отсчета (нулевого уровня). В технике за нулевой потенциал выбирают потенциал поверхности Земли или проводника, соединенного с землей. Такой проводник называютзаземленным . Вфизике за начало отсчета (нулевой уровень) потенциала (и потенциальной энергии) принимается любая точка, бесконечно удаленная от зарядов, создающих поле.

На расстоянии r от точечного зарядаq , создающего поле, потенциал определяется формулой

\(~\varphi = k \cdot \dfrac{q}{r}.\)

Потенциал в любой точке поля, создаваемого положительным зарядомq ,положителен , а поля, создаваемого отрицательным зарядом, отрицателен: еслиq > 0, то φ > 0; еслиq

Потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R , в точке, находящейся на расстоянииr от центра сферы \(~\varphi = k \cdot \dfrac{q}{R}\) приr ≤R и \(~\varphi = k \cdot \dfrac{q}{r}\) приr >R .

Принцип суперпозиции : потенциал φ поля, созданного системой зарядов, в некоторой точке пространства равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:

\(~\varphi = \varphi_1 + \varphi_2 + \varphi_3 + … = \sum_{i=1}^n \varphi_i .\) Зная потенциал φ поля в данной точке, можно рассчитать потенциальную энергию заряда q

0 помещенного в эту точку:W 1 =q 0⋅φ. Если положить, что вторая точка находится в бесконечности, т.е.W 2 = 0, то \(~A_{1\infty} = W_{1} = q_0 \cdot \varphi_1 .\) Потенциальная энергия заряда q

0 в данной точке поля будет равна работе сил электростатического поля по перемещению зарядаq 0 из данной точки в бесконечность. Из последней формулы имеем \(~\varphi_1 = \dfrac{A_{1\infty}}{q_0}.\)

Физический смысл потенциала : потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в бесконечность.

Потенциальная энергия заряда q

0 помещенного в электростатическое поле точечного зарядаq на расстоянииr от него, \(~W = k \cdot \dfrac{q \cdot q_0}{r}.\)

Если q иq 0 — одноименные заряды, тоW > 0, еслиq иq 0 — разные по знаку заряды, тоW

Отметим, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение W выбрано ее значение приr = ∞.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: