Видимый свет – это электромагнитная волна
Обычно наблюдаемый свет представляет собой комбинацию различных цветных световых волн. Эти разные цвета света обусловлены разными частотами света. Видимый свет имеет много применений в оптике, материаловедении, конденсированном веществе, лазерных науках, разных отраслях промышленности, которые используют этот свет для экспериментов и каждый день. Примерами являются экраны проекторов, лазерный луч, используемый в шоу, или указатель, камера и так далее.
Свет – это часть электромагнитного спектра, к которому чувствительны наши глаза. Главное применение видимого света – это способность видеть вещи своими глазами. Излучение спектра передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Этот спектр классически разделен на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Наши глаза могут обнаружить только крошечную часть электромагнитного спектра, называемую видимым светом.
Так работают лампочки: электрический ток нагревает ламповую нить примерно до 3000 градусов, и она светится горячим светом. Поверхность Солнца составляет около 5600 градусов и выделяет много света. Белый свет фактически состоит из целого ряда цветов, смешанных друг с другом. Это можно увидеть, если пропустить белый свет через стеклянную призму. Компакт-диски считываются лазерным излучением. Лазеры используются в компакт-дисках и DVD-плеерах, где свет отражается от крошечных ямок на диске, при этом происходит преобразование в звук или данные. Лазеры также используются в лазерных принтерах и в системах прицеливания самолетов.
Польза и влияние на организм человека
Для человеческого организма излучение ИК спектра представляет множество полезных качеств, а именно:
- способствует расслаблению мышц;
- снижает артериальное давление;
- лечит инфекции бактериального происхождения;
- оказывает общеукрепляющее воздействие;
- в результате точечного влияния тепловых колебаний на определенные органы и области организма снижается развитие заболеваний и достигается положительная динамика в общей терапии.
Помимо перечисленных областей применения ИК излучение широко вошло в технических разработках даже бытового применения. Ярким примером можно считать ИК-датчики в системах сигнализации, пульты дистанционного управления для систем освещения и управления разными бытовыми приборами, устройства ночного видения и т.п.
Инфракрасное излучение. Открытие инфракрасного излучения
Определение 1
Под инфракрасным излучением (ИК) понимается форма энергии или способ обогрева, при котором тепло от одного тела передается другому телу.
Человек в процессе своей жизни постоянно находится под действием ИК-излучения и способен чувствовать эту энергию как тепло, идущее от предмета. Воспринимается инфракрасное излучение кожей человека, глаза в этом спектре не видят.
Естественным источником высокой температуры является наше светило. С температурой нагревания связана длина волны инфракрасных лучей, которые бывают коротковолновыми, средневолновыми, длинноволновыми.
Короткая длина волны имеет высокую температуру и интенсивное излучение. Ещё в $1800$ г. английский астроном У. Гершель проводил наблюдения за Солнцем. Занимаясь исследованием светила, он искал способ, который бы позволил уменьшить нагрев инструмента, при помощи которого эти исследования проводились. На одном из этапов своей работы ученый обнаружил, что за насыщенным красным цветом находится «максимум тепла». Исследование стало началом изучения инфракрасного излучения.
Если раньше источниками инфракрасного излучения в лаборатории служили раскаленные тела или электрические разряды в газах, то сегодня созданы современные источники инфракрасного излучения с частотой, которую можно регулировать или фиксировать. Их основой являются твердотельные и молекулярные газовые лазеры.
В ближней инфракрасной области (около $1,3$ мкм) для регистрации излучения пользуются специальными фотопластинками.
В дальней инфракрасной области излучение регистрируется болометрами – это детекторы, которые являются чувствительными к нагреву инфракрасным излучением.
Инфракрасные волны имеют разную длину, поэтому их проникающая способность будет тоже разная.
Длинноволновые, идущие от Солнца лучи, например, спокойно проходят через атмосферу Земли, при этом, не нагревая её. Проникая через твердые тела, они увеличивают их температуру, поэтому для всего живого на планете огромное значение имеет именно дальнее излучение.
Интересно, что в постоянной компенсирующей подпитке нуждаются все живые тела, которые тоже излучают такой же спектр тепла. При отсутствии такой подпитки, температура живого тела падает, что является причиной его уязвимости для различных инфекций. Эта дополнительная подпитка в виде ИК-излучения, как считают ученые, скорее полезна, чем вредна.
Замечание 1
Специалисты провели на животных многочисленные эксперименты, которые показали, что инфракрасные лучи подавляют рост раковых клеток, уничтожают ряд вирусов, нейтрализуют разрушительное действие электромагнитных волн. Длинноволновые инфракрасные лучи повышают количество инсулина, вырабатываемого организмом, и нивелируют последствия радиоактивного воздействия.
Как производится лазер?
Искусственный процесс включает в себя следующее:
- Источник энергии.
- Активная среда.
- Оптическая полость.
Активная среда поглощает энергию из источника, сохраняет ее и высвобождает ее как свет. Что-то из этого света запускает другие атомы, чтобы высвободить их энергию, поэтому к запущенному добавляется еще больше света. Зеркала в конце оптической полости отражают свет обратно в активную среду, и процесс начинается снова, заставляя свет усиливаться и вызывая его часть в виде узкого луча – лазера. Для увеличения светового излучения в возбужденном состоянии должно быть больше атомов, чем было изначально. Это называется инверсией данных. Это состояние не происходит при нормальных условиях. Поэтому этому процессу должны помочь искусственные технологии, а не природа.
Светодиоды и лазеры
Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.
Как проверить уровень электромагнитного излучения в домашних условиях
Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.
Watch this video on YouTube
Для самостоятельного определения степени излучения понадобятся отвертка с индикатором и радиоприемник.
- Выдвиньте антенну из приемника;
- Прикрутите к ней проволочную петлю диаметром 40 см;
- Настройте радио на пустую частоту;
- Обойдите помещение. Прислушивайтесь к звукам приемника;
- Место, где слышатся отчетливые звуки, и является источником излучения;
- Поднесите индикаторную отвертку со светодиодом. Индикатор станет красным, а интенсивность цвета скажет о силе излучения.
Увидеть значение в цифрах позволит ручной прибор. Он работает на разных частотах и улавливает напряжение электромагнитного поля. Прибор настраивается на нужный режим частот, выбирая единицы измерения: вольт/метр или микроватт/см2, отслеживает выбранную частоту и выводит результат на компьютер.
Также хорошим прибором является АТТ-2592. Устройство портативное, имеет дисплей с подсветкой. Измерение выполняет изотропным методом, автоматически выключается через 15 минут.
Что такое шаговое напряжение и как покинуть опасную зону
Что такое электромагнитное реле, их виды и принцип работы
Что такое светодиод, его принцип работы, виды и основные характеристики
Что такое цветовая температура светодиодных ламп?
Клетка Фарадея своими руками
Как выбрать потолочный инфракрасный обогреватель?
А что там — за видимой областью спектра?
По мере того, как волны становятся короче, цвет меняется от красного к синему, доходит до фиолетового и, наконец, видимый свет исчезает. Но сам свет не исчез — а перешел в область спектра, которая называется ультрафиолетом. Хоть эту часть спектра света мы уже не воспринимаем, но именно она заставляет светиться люминесцентные лампы, некоторые виды светодиодов, а также всякие прикольные светящиеся в темноте штучки. Дальше уже идут рентгеновское и гамма-излучение, с которыми лучше дел не иметь вообще.
С другого конца области спектра видимого света, там где заканчивается красный цвет, начинается инфракрасное излучение, которое скорее тепло, чем свет. Вполне может вас поджарить. Затем идет микроволновое излучение (очень опасное для яиц), а еще дальше — то, что мы привыкли называть радиоволнами. У них длины уже измеряются сантиметрами, метрами и даже километрами.
Длины волн
В оптике принято характеризовать монохроматические излучения по их длине волны в вакууме ; эта величина полезна в нескольких приложениях. Скорость света в материале происходит медленнее , чем в вакууме . Отношение этих скоростей и есть показатель преломления материала. Когда луч света пересекает границу между двумя материалами с разными показателями преломления под углом, он претерпевает отклонение, которое зависит от соотношения этих показателей. В диспергирующих материалах скорость распространения излучения и, следовательно, показатель преломления зависит от частоты или энергии фотона . Отклонение при прохождении через такую среду зависит от этой разницы в скорости. Таким образом, компоненты света, который содержит смесь частот, распределяются. Вода — один из таких материалов, и прохождение солнечного света через воздушные капли воды создает радугу . В оптических стекол более или менее дисперсионные. Их можно использовать для разложения белого света с помощью призмы : это эксперимент Ньютона, лежащий в основе термина « спектр» . Дифракционная решетка также позволяет, за счет эффекта интерференции, дисперсия световых лучей в зависимости от частоты. На сегодняшний день это основной метод спектрального анализа.
В оптике обычно описывают спектр как функцию длины волны излучения в вакууме. Проходя через любую среду, скорость света уменьшается, а частота и эквивалентная энергия фотона остаются прежними. Поэтому длина волны варьируется от одной среды к другой в зависимости от преломляющей способности . Было бы более строго определить излучение в соответствии с энергией фотона, но по историческим причинам и особенно с практической точки зрения, говорят о длине волны, подразумевая в вакууме .
Пределы видимого
Чувствительность глаза постепенно снижается с увеличением длины волны и варьируется от человека к человеку, поэтому для видимого спектра можно задать несколько ограничений. Международная комиссия по освещению определяет видение опорного наблюдателя между длиной волны в вакууме , начиная с 380 (нм) , воспринимается как чрезвычайно темно — фиолетового , и до 780 нм , что соответствует едва заметным красным , как хорошо.
В исключительных условиях, таких как подавление линз после операции по удалению катаракты, эти пределы человеческого восприятия могут простираться до 310 нм в ультрафиолетовой области и до 1100 нм в ближней инфракрасной области .
Действующие способы защиты
Самым эффективным способом защиты считается снижение мощности излучающих источников или простой уход из зоны его воздействия. Но если в домашних условиях, благодаря действующим СНиП и СанПиН, показатели напряжённости редко превышают действующие нормативы, то в производственных условиях избежать такого воздействия удаётся не всегда.
Уменьшение мощности источника может быть достигнуто несколькими способами:
- Применение поглощающих экранов и защитных конструкций.
- Установка блокирующих или отражающих устройств.
Также читайте: Заземлитель нейтрали трансформатора — ЗОН
Все подобные средства относят к коллективной защите, в дополнение к ним применяют и СИЗ (средства индивидуальной защиты).
Большинство средств защиты от электромагнитного поля предназначены для промышленных условий. В их число входят:
- Отражающие экраны, козырьки и другие сооружения, из металлической сетки, арматуры, металлических листов. На практике получили более дешёвые конструкции из стали, цветных металлов и их сплавов. Все эти конструкции должны быть обязательно заземлены. Принцип действия основан на появлении в материалах экранов токов Фуко (вихревых токов), которые по амплитуде имеют сходное значение, но находятся в противофазе. В результате результирующее поле теряет свою напряжённость и не может пройти через защитную конструкцию.
- Поглощающие конструкции делают с применением полимерных материалов — пенополистирол, различные виды резины, поролон. Хорошие показатели и пропитанной специальными составами древесины, используют и пластины из ферромагнитных сплавов, но это уже более дорогой результат.
- Чтобы придать различным конструкциям защитные свойства, применяют токопроводящие краски на основе порошкового графита, оксидов металлов, сажи, коллоидного серебра. В этом случае получают отражающие элементы защиты от электромагнитного излучения.
- Получили распространение и ионизаторы, которые позволяют нейтрализовать заряды статического напряжения, возникающего под воздействием электрического и магнитного поля. Такие устройства применяются и в быту.
К индивидуальным средствам защиты относят:
- Спецодежда и обувь, изготовленная из тканей с вплетением металлических нитей.
- Защитные очки с металлизированными покрытиями, обладающими отражающими свойствами.
- Для предотвращения воздействия инфракрасного излучения применяют стандартные теплоизолирующие костюмы.
- Воздействие ультрафиолетового излучения нейтрализуют защитной одеждой и очками или маской со светофильтрами. Простой пример — комплект спецодежды электросварщика.
Привели только распространённые решения, которые дают возможность нейтрализовать или минимизировать воздействие электромагнитного излучения. Но в бытовых условиях такие варианты малоприменимы.
Также читайте: Почему моргает светодиодная лампочка при выключенном свете
Особенности инфракрасного излучения
Если сфотографировать одинаковые предметы различных цветов через инфракрасный фильтр, все они окажутся схожего оттенка, что исключает предположение о соответствии тона ИК-изображения определенному цвету. Информация о предмете в ближнем диапазоне ИК-спектра не зависит и от температуры. В этом можно убедиться, сфотографировав через инфракрасный фильтр любой предмет в холодном и нагретом состоянии – вы получите идентичные снимки.
Стало быть, фотоаппарат регистрирует не тепло и не цвет, а отражающую способность по отношению к инфракрасному излучению. Светло-серый асфальт в ИК-спектре и зимой, и летом будет выглядеть темным, потому что способен нагреться (поглотить ИК-излучение). А листва, хвоя и трава получатся белыми – они, защищаясь от перегрева, отражают тепловое излучение.
ИК-съемка на «цифру» осложняется наличием встроенного инфракрасного фильтра, защищающего матрицу от ощутимой доли ИК-излучения. Для такой съемки необходимо использовать специальную камеру. Несмотря на то, что матрицы цифровых камер чувствительны к инфракрасному излучению, их чувствительность к видимому свету в тысячи раз больше. Поэтому, чтобы получить ИК-изображение, необходимо блокировать видимый свет.
При съемке в ИК-диапазоне требуется использовать фильтр, отсекающий излучение видимого диапазона. Это приводит к возникновению других проблем: во-первых, при инфракрасном фильтре в видоискателе ничего не видно, что препятствует выполнению автофокусировки; во-вторых, инфракрасный свет фокусируется не в той же точке, где видимый. Эти особенности требуется учитывать при разработке решений, использующих цифровое изображение в инфракрасном диапазоне. В то же время для анализа изображения в ИК-диапазоне есть возможность получить картинку с большим контрастом, напоминающую черно-белую фотографию, но более яркую.
На анализе изображения в инфракрасном диапазоне основаны многие методы биометрической идентификации. С его помощью можно определить, что процедуру проходит живой человек и провести распознавание по радужной оболочке глаз или рисунку кровеносных сосудов. Рассмотрим, как это происходит на примере рисунка вен ладони.
Вред для человека
Стоит отметить, что вред от инфракрасного излучения для организма человека тоже может быть весьма существенным. Наиболее очевидные и распространенные случаи — ожоги кожи и дерматиты. Происходить они могут либо при слишком длительном воздействии слабых волн инфракрасного спектра, либо в ходе интенсивного облучения. Если говорить о медицинских процедурах, то редко, но все же случаются тепловые удары, астении и обострения болей при неправильном лечении.
Одной из современных проблем являются ожоги глаз. Наиболее опасны для них ИК-лучи с длинами волн в пределах 0,76-1,5 мкм. Под их влиянием происходит нагревание хрусталика и водянистой влаги, что может приводить к различным нарушениям. Одним из самых распространенных последствий является светобоязнь. Об этом стоит помнить детям, играющим с лазерными указками, и сварщикам, пренебрегающим средствами индивидуальной защиты.
Влияние инфракрасного излучения на организм человека
Намеренное использование свойств ИК-лучей приносит пользу организму человека. Вот примеры, как именно они способствуют общему укреплению здоровья:
- Лучи способствуют уничтожению болезнетворных бактерий, тем самым помогая в борьбе с простудными заболеваниями.
- Действие инфракрасных лучей укрепляет иммунитет детей и взрослых.
- Также докторами отмечена их польза для кожи. За счет усиления кровотока коже легче получить необходимые вещества, вследствие этого она становится более подтянутой.
- Косметическим эффектом польза лучей для кожи неограниченна. Многочисленные исследования показывают, что они способствуют излечению кожных заболеваний, таких как крапивница, псориаз, дерматит.
- Насыщенность замкнутого пространства инфракрасным излучением способствует снижению вреда от пыли для организма человека.
Важно! Лечебное действие инфракрасного излучения обусловлено тем, что лучи, проникая в организм человека, запускают цепочки сложных биохимических реакций
Где применяется инфракрасное излучение?
Каждое новое открытие находит свое применение, с извлечением наибольшей пользы для человечества. Открытие инфракрасных лучей помогло справиться со многими проблемами в разных областях от медицины до производственных масштабов.
Самые известные области, где используются свойства невидимых лучей:
- С помощью специальных приборов, тепловизоров, можно обнаружить объект на удаленном расстоянии, используя свойства инфракрасного излучения. Любой предмет, способный удерживать температуру на своей поверхности, тем самым обладая выделением инфракрасных лучей. Термографическая камера распознает тепловые лучи и создает точное изображение обнаруживаемого предмета. Данное свойство может использоваться в промышленности и в военной практике.
- Для проведения процедуры слежения в военной практике применяются приборы с датчиками, способными определять цель, которая излучает тепло. Кроме того, передается что именно находится в ближайшем окружении, чтобы правильно рассчитать не только траекторию, но и силу удара, чаще всего ракеты.
- Активная отдача тепла вместе с лучами применяется в бытовых условиях, используя полезные свойства для обогрева помещения в холодное время года. Радиаторы изготавливаются из металла, который способен передать наибольшее количество тепловой энергии. Такое же действие и у обогревателей. Некоторые бытовые приборы: телевизоры, пылесосы, печи, утюги обладают теми же свойствами.
- В промышленности процесс сварки пластмассовых изделий, отжиг осуществляется при помощи инфракрасного излучения.
- Инфракрасное облучение применяется в медицинской практике для лечения теплом некоторых патологий, а также для обеззараживания воздуха в помещении с помощью кварцевых ламп.
- Составление метеорологических карт невозможно без специальных приборов с датчиками теплового обнаружения, которые с легкостью определяют движение теплого и холодного воздуха.
- Для астрономических исследований изготавливаются специальные телескопы, чувствительные к инфракрасным лучам, которым под силу обнаружить космические предметы с разной температурой на поверхности.
- В пищевой промышленности для термической обработки круп.
- Для проверки денежных купюр используется приборы с инфракрасным излучением, при свете которых можно распознать фальшивые банкноты.
Земля как источник инфракрасного излучения
Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.
Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.
Видимое излучение: кем и когда открыто?
Первым объяснил возникновение спектра (этот термин был употреблен впервые в 1671 году) видимого излучения Исаак Ньютон в своем труде «Оптика» и Иоганн Гете в своей работе «Теория цветов». Что такое видимое излучение? Кем и когда открыто? Также похожими исследованиями занимался Роджер Бэкон, который наблюдал за спектром в стакане воды задолго до Ньютона и Гете.
Применение в жизни видимого излучения дает возможность видеть что-либо вообще. Свет движется, как волна, отскакивая от объектов, чтобы люди могли их видеть. Без этого все были бы в полной темноте. Но в физике свет может относиться к любой электромагнитной волне: радиоволнам, микроволнам, инфракрасному, видимому, ультрафиолетовому, рентгеновскому излучению или гамма-лучам.
Что такое электромагнитное излучение?
Электромагнитное излучение — это комбинация колеблющихся электрических и магнитных полей. Тип электромагнитного поля на основе волны, генерируемые источниками указанного излучения и распространяющиеся со скоростью света, переносящие энергию из одного места в другое..
И первое, что нам нужно сделать, это забыть идею о том, что «радиация» является синонимом «рака». Нет. Мы увидим, почему мы так верим, но это не так. Все вещество во Вселенной излучает эти волны в космос, которые проходят через нее. И в зависимости от его внутренней энергии эти волны будут более или менее узкими.
Тело с большим количеством энергии излучает волны с очень высокой частотой., то есть с очень мало отделенными друг от друга «гребнями». Считается, что его длина волны короче. И, следовательно, те, у кого мало энергии, излучают волны с более удаленными «пиками». Считается, что его длина волны больше.
И это ключ ко всему. Что ж, от излучения с большей длиной волны (тела с низкой энергией) до излучения с меньшей длиной волны (тела с очень большой энергией) распространяется так называемый электромагнитный спектр, способ упорядоченного распределения набора электромагнитных волн на основе его частоты. и, следовательно, длина волны.
Слева — излучение с низкочастотными волнами, а справа — излучение с высокочастотными волнами.. И все они, несмотря на различия, которые мы увидим позже, имеют одну общую черту: они не видят нас. Мы можем видеть только одну форму излучения с определенной длиной волны. Очевидно, мы говорим о видимом спектре. Свет.
Рекомендуем прочитать: «12 самых жарких мест во Вселенной».
История открытия и общая характеристика
Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.
Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до
1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением .
ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .
Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .
Источник
Другие изображения
В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.
Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.