Таблица кодировок планарных SMD деталей
Указаны первые 2 символа чип-элемента. Нажав на них вы попадёте на страницу с другой таблицей, где приводятся различные варианты остальных символов с кратким обозначением функций и параметров для каждого.
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | 0G | 0H | 0I | 0J | 0K | 0L | 0M | 0N | 0P | 0Q | 0R | 0S | 0T | 0U | 0V | 0W | 0X | 0Y | 0Z |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D | 1E | 1F | 1G | 1H | 1I | 1J | 1K | 1L | 1M | 1N | 1P | 1Q | 1R | 1S | 1T | 1U | 1V | 1W | 1X | 1Y | 1Z |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2P | 2Q | 2R | 2S | 2T | 2U | 2V | 2W | 2X | 2Y | 2Z |
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3P | 3Q | 3R | 3S | 3T | 3U | 3V | 3W | 3X | 3Y | 3Z |
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4P | 4Q | 4R | 4S | 4T | 4U | 4V | 4W | 4X | 4Y | 4Z |
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 5M | 5N | 5P | 5Q | 5R | 5S | 5T | 5U | 5V | 5W | 5X | 5Y | 5Z |
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6P | 6Q | 6R | 6S | 6T | 6U | 6V | 6W | 6X | 6Y | 6Z |
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 7J | 7K | 7L | 7M | 7N | 7P | 7Q | 7R | 7S | 7T | 7U | 7V | 7W | 7X | 7Y | 7Z |
80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 8P | 8Q | 8R | 8S | 8T | 8U | 8V | 8W | 8X | 8Y | 8Z |
90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9P | 9Q | 9R | 9S | 9T | 9U | 9V | 9W | 9X | 9Y | 9Z |
A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | AA | AB | AC | AD | AE | AF | AG | AH | AI | AJ | AK | AL | AM | AN | AP | AQ | AR | AS | AT | AU | AV | AW | AX | AY | AZ |
B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | BA | BB | BC | BD | BE | BF | BG | BH | BI | BJ | BK | BL | BM | BN | BP | BQ | BR | BS | BT | BU | BV | BW | BX | BY | BZ |
C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | CA | CB | CC | CD | CE | CF | CG | CH | CI | CJ | CK | CL | CM | CN | CP | CQ | CR | CS | CT | CU | CV | CW | CX | CY | CZ |
D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | DA | DB | DC | DD | DE | DF | DG | DH | DI | DJ | DK | DL | DM | DN | DP | DQ | DR | DS | DT | DU | DV | DW | DX | DY | DZ |
E0 | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | EA | EB | EC | ED | EE | EF | EG | EH | EI | EJ | EK | EL | EM | EN | EP | EQ | ER | ES | ET | EU | EV | EW | EX | EY | EZ |
F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | FA | FB | FC | FD | FE | FF | FG | FH | FI | FJ | FK | FL | FM | FN | FP | FQ | FR | FS | FT | FU | FV | FW | FX | FY | FZ |
G0 | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | GA | GB | GC | GD | GE | GF | GG | GH | GI | GJ | GK | GL | GM | GN | GP | GQ | GR | GS | GT | GU | GV | GW | GX | GY | GZ |
H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | HA | HB | HC | HD | HE | HF | HG | HH | HI | HJ | HK | HL | HM | HN | HP | HQ | HR | HS | HT | HU | HV | HW | HX | HY | HZ |
I0 | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | IA | IB | IC | ID | IE | IF | IG | IH | II | IJ | IK | IL | IM | IN | IP | IQ | IR | IS | IT | IU | IV | IW | IX | IY | IZ |
J0 | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | J9 | JA | JB | JC | JD | JE | JF | JG | JH | JI | JJ | JK | JL | JM | JN | JP | JQ | JR | JS | JT | JU | JV | JW | JX | JY | JZ |
K0 | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | KA | KB | KC | KD | KE | KF | KG | KH | KI | KJ | KK | KL | KM | KN | KP | KQ | KR | KS | KT | KU | KV | KW | KX | KY | KZ |
L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | LA | LB | LC | LD | LE | LF | LG | LH | LI | LJ | LK | LL | LM | LN | LP | LQ | LR | LS | LT | LU | LV | LW | LX | LY | LZ |
M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | MA | MB | MC | MD | ME | MF | MG | MH | MI | MJ | MK | ML | MM | MN | MP | MQ | MR | MS | MT | MU | MV | MW | MX | MY | MZ |
N0 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | NA | NB | NC | ND | NE | NF | NG | NH | NI | NJ | NK | NL | NM | NN | NP | NQ | NR | NS | NT | NU | NV | NW | NX | NY | NZ |
P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | PA | PB | PC | PD | PE | PF | PG | PH | PI | PJ | PK | PL | PM | PN | PP | PQ | PR | PS | PT | PU | PV | PW | PX | PY | PZ |
Q0 | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | QA | QB | QC | QD | QE | QF | QG | QH | QI | QJ | QK | QL | QM | QN | QP | QR | QS | QT | QU | QV | QW | QX | QY | QZ | |
R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | RA | RB | RC | RD | RE | RF | RG | RH | RI | RJ | RK | RL | RM | RN | RP | RQ | RR | RS | RT | RU | RV | RW | RX | RY | RZ |
S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | SA | SB | SC | SD | SE | SF | SG | SH | SI | SJ | SK | SL | SM | SN | SP | SQ | SR | SS | ST | SU | SV | SW | SX | SY | SZ |
T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | TA | TB | TC | TD | TE | TF | TG | TH | TI | TJ | TK | TL | TM | TN | TP | TQ | TR | TS | TT | TU | TV | TW | TX | TY | TZ |
U0 | U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8 | U9 | UA | UB | UC | UD | UE | UF | UG | UH | UI | UJ | UK | UL | UM | UN | UP | UQ | UR | US | UT | UU | UV | UW | UX | UY | UZ |
V0 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | VA | VB | VC | VD | VE | VF | VG | VH | VI | VJ | VK | VL | VM | VN | VP | VQ | VR | VS | VT | VU | VV | VW | VX | VY | VZ |
W0 | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | WA | WB | WC | WD | WE | WF | WG | WH | WI | WJ | WK | WL | WM | WN | WP | WQ | WR | WS | WT | WU | WV | WW | WX | WY | WZ |
X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | XA | XB | XC | XD | XE | XF | XG | XH | XI | XJ | XK | XL | XM | XN | XP | XQ | XR | XS | XT | XU | XV | XW | XX | XY | XZ |
Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | YA | YB | YC | YD | YE | YF | YG | YH | YI | YJ | YK | YL | YM | YN | YP | YQ | YR | YS | YT | YU | YV | YW | YX | YY | YZ |
Z0 | Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | Z8 | Z9 | ZA | ZB | ZC | ZD | ZE | ZF | ZG | ZH | ZI | ZJ | ZK | ZL | ZM | ZN | ZP | ZQ | ZR | ZS | ZT | ZU | ZV | ZW | ZX | ZY | ZZ |
Корпуса чип-компонентов
Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:
выводы/размер | Очень-очень маленькие | Очень маленькие | Маленькие | Средние |
2 вывода | SOD962 (DSN0603-2), WLCSP2*, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) | SOD323, SOD328 | SOD123F, SOD123W | SOD128 |
3 вывода | SOT883B (DFN1006B-3), SOT883, SOT663, SOT416 | SOT323, SOT1061 (DFN2020-3) | SOT23 | SOT89, DPAK (TO-252), D2PAK (TO-263), D3PAK (TO-268) |
4-5 выводов | WLCSP4*, SOT1194, WLCSP5*, SOT665 | SOT353 | SOT143B, SOT753 | SOT223, POWER-SO8 |
6-8 выводов | SOT1202, SOT891, SOT886, SOT666, WLCSP6* | SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) | SOT457, SOT505 | SOT873-1 (DFN3333-8), SOT96 |
> 8 выводов | WLCSP9*, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) | WLCSP16*, SOT1178 (DFN2110-9), WLCSP24* | SOT1176 (DFN2510A-10), SOT1158 (DFN2512-12), SOT1156 (DFN2521-12) | SOT552, SOT617 (DFN5050-32), SOT510 |
Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.
Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.
Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять BGA-микросхемы.
Типы корпусов SMD по названиям
Название | Расшифровка | кол-во выводов |
SOT | small outline transistor | 3 |
SOD | small outline diode | 2 |
SOIC | small outline integrated circuit | >4, в две линии по бокам |
TSOP | thin outline package (тонкий SOIC) | >4, в две линии по бокам |
SSOP | усаженый SOIC | >4, в две линии по бокам |
TSSOP | тонкий усаженный SOIC | >4, в две линии по бокам |
QSOP | SOIC четвертного размера | >4, в две линии по бокам |
VSOP | QSOP ещё меньшего размера | >4, в две линии по бокам |
PLCC | ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
CLCC | ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
QFP | квадратный плоский корпус | >4, в четыре линии по бокам |
LQFP | низкопрофильный QFP | >4, в четыре линии по бокам |
PQFP | пластиковый QFP | >4, в четыре линии по бокам |
CQFP | керамический QFP | >4, в четыре линии по бокам |
TQFP | тоньше QFP | >4, в четыре линии по бокам |
PQFN | силовой QFP без выводов с площадкой под радиатор | >4, в четыре линии по бокам |
BGA | Ball grid array. Массив шариков вместо выводов | массив выводов |
LFBGA | низкопрофильный FBGA | массив выводов |
CGA | корпус с входными и выходными выводами из тугоплавкого припоя | массив выводов |
CCGA | СGA в керамическом корпусе | массив выводов |
μBGA | микро BGA | массив выводов |
FCBGA | Flip-chip ball grid array. Массив шариков на подложке, к которой припаян кристалл с теплоотводом | массив выводов |
LLP | безвыводной корпус |
Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы , чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки — это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.
Типоразмеры SMD-компонентов
Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его «типоразмеру». Например, чип-резисторы имеют типоразмеры от «0201» до «2512». Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах.
smd резисторы
Прямоугольные чип-резисторы и керамические конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | H, мм (дюйм) | A, мм | Вт |
0201 | 0.6 (0.02) | 0.3 (0.01) | 0.23 (0.01) | 0.13 | 1/20 |
0402 | 1.0 (0.04) | 0.5 (0.01) | 0.35 (0.014) | 0.25 | 1/16 |
0603 | 1.6 (0.06) | 0.8 (0.03) | 0.45 (0.018) | 0.3 | 1/10 |
0805 | 2.0 (0.08) | 1.2 (0.05) | 0.4 (0.018) | 0.4 | 1/8 |
1206 | 3.2 (0.12) | 1.6 (0.06) | 0.5 (0.022) | 0.5 | 1/4 |
1210 | 5.0 (0.12) | 2.5 (0.10) | 0.55 (0.022) | 0.5 | 1/2 |
1218 | 5.0 (0.12) | 2.5 (0.18) | 0.55 (0.022) | 0.5 | 1 |
2010 | 5.0 (0.20) | 2.5 (0.10) | 0.55 (0.024) | 0.5 | 3/4 |
2512 | 6.35 (0.25) | 3.2 (0.12) | 0.55 (0.024) | 0.5 | 1 |
Цилиндрические чип-резисторы и диоды | |||||
Типоразмер | Ø, мм (дюйм) | L, мм (дюйм) | Вт | ||
0102 | 1.1 (0.01) | 2.2 (0.02) | 1/4 | ||
0204 | 1.4 (0.02) | 3.6 (0.04) | 1/2 | ||
0207 | 2.2 (0.02) | 5.8 (0.07) | 1 |
smd конденсаторы
Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:
Танталовые конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | T, мм (дюйм) | B, мм | A, мм |
A | 3.2 (0.126) | 1.6 (0.063) | 1.6 (0.063) | 1.2 | 0.8 |
B | 3.5 (0.138) | 2.8 (0.110) | 1.9 (0.075) | 2.2 | 0.8 |
C | 6.0 (0.236) | 3.2 (0.126) | 2.5 (0.098) | 2.2 | 1.3 |
D | 7.3 (0.287) | 4.3 (0.170) | 2.8 (0.110) | 2.4 | 1.3 |
E | 7.3 (0.287) | 4.3 (0.170) | 4.0 (0.158) | 2.4 | 1.2 |
smd катушки индуктивности и дроссели
Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.
Всякие катушки, дроссели и трансформаторы называются «моточные изделия». Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур.
Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом «08» обозначает длину, а «05» ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма.
smd диоды и стабилитроны
Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.
Диоды, стабилитроны, конденсаторы, резисторы | |||||
Тип корпуса | L* (мм) | D* (мм) | F* (мм) | S* (мм) | Примечание |
DO-213AA (SOD80) | 3.5 | 1.65 | 048 | 0.03 | JEDEC |
DO-213AB (MELF) | 5.0 | 2.52 | 0.48 | 0.03 | JEDEC |
DO-213AC | 3.45 | 1.4 | 0.42 | — | JEDEC |
ERD03LL | 1.6 | 1.0 | 0.2 | 0.05 | PANASONIC |
ER021L | 2.0 | 1.25 | 0.3 | 0.07 | PANASONIC |
ERSM | 5.9 | 2.2 | 0.6 | 0.15 | PANASONIC, ГОСТ Р1-11 |
MELF | 5.0 | 2.5 | 0.5 | 0.1 | CENTS |
SOD80 (miniMELF) | 3.5 | 1.6 | 0.3 | 0.075 | PHILIPS |
SOD80C | 3.6 | 1.52 | 0.3 | 0.075 | PHILIPS |
SOD87 | 3.5 | 2.05 | 0.3 | 0.075 | PHILIPS |
smd транзисторы
Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.
Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки
Что написано на SMD резисторах
Для поверхностного монтажа на печатных платах обычные виды резисторов применят неудобно. Поэтому были разработаны специальные технологии, позволяющие делать их маленькими — длинной и шириной в несколько миллиметров. Это позволяет использовать площадь плат по максимуму. Но на миниатюрных резисторах даже цветовую маркировку нанести сложно. Поэтому для SMD резисторов разработана своя маркировка — цифро-буквенная. Есть три варианта этой маркировки:
- три цифры;
- четыре цифры;
-
три цифры и буква.
Для резисторов SMD со средней погрешностью
Первые два варианта маркировки резисторов — три или четыре цифры — применяют для резисторов со средней погрешностью (допустимое отклонение 5-10%). В них первые две или три цифры — это номинал, последняя определяет множитель. Эта цифра, показывает в какую степень надо возвести 10. Для тех у кого нелады с возведением в степень, множитель прописан на рисунке ниже. Можно также сказать, что последняя цифра показывает, сколько нулей в множителе.
Правило расшифровки кодов номиналов SMD сопротивлений
Принцип нахождения номинала похож на цифро-буквенную маркировку советских резисторов. Первые две или три цифры надо умножить на множитель. Чтобы было понятнее, давайте разберем несколько примеров надписей на SMD сопротивлении. Множитель можно брать из таблицы на рисунке выше.
- 480 — 48 надо умножить на 1, то есть это резистор на 48 Ом;
- 313 — 31 надо умножить на 1000, получаем 31000 Ом или 31 кОм;
- 5442 — 544 надо умножить на 100, итого 54400 Ом или 54,4 кОм;
- 2115 — 211 с множителем 100 000, получаем 21 100 000 Ом или 21,1 МОм.
Но для маркировки низкоомных резисторов SMD — с сопротивлением менее 100 Ом — используют другую систему. Тут надо определиться с положением точки. Вместо точки ставят латинскую букву R. Пример есть на картинке ниже, разобраться несложно.
Маркировка низкоомных SMD резисторов
Если видите на корпусе резистора букву R, это значит, что номинал небольшой — не более 100 Ом. Иногда встречается вариант с буквой K. Этой буквой зашифровывают множитель 10³ или 1000. Этот тип обозначений создан по аналогии, то есть положение буквы обозначает наличие точки.
Из всех примеров разобрать стоит только K47, да еще, может быть 4K7. Остальные понять несложно. Итак, K47. Так как буква стоит перед цифрами, перед ними ставим запятую, а множитель известен — 1000. Так что получаем: 0,47 * 1000 Ом = 470 Ом. Второй пример: 4K7. Так как буква стоит между цифрами, ставим тут запятую, множитель все тот же — 1000. Получаем 4,7 * 1000 = 4700 Ом или 4,7 кОм.
Расшифровка кодов прецизионных резисторов СМД (повышенной точности)
Для резисторов поверхностного монтажа на печатных платах повышенной точности есть своя маркировка. Описана она в стандарте EIA-96. Применяется для изделий с возможными отклонениями по номиналу не более 1% (0,5%, 0,25%). На поверхности резистора стоят две цифры и одна буква (не R и не K), но значение у них другое:
две цифры обозначают код номинала (обратите внимание, не сам номинал, а его код);
буква — множитель.
Находится номинал в несколько шагов. Сначала по таблице находят код (на картинке ниже), по нему определяют номинал. По второй части таблицы находят множитель (выделен красным). Два найденных числа перемножают и получают номинал.
Таблица расшифровки кодов для SMD резисторов повышенной точности
Давайте разберем несколько примеров того, как определить номинал прецизионных резисторов SMD типа.
- 01С. Код 01 обозначает 100 Ом, буква С — множитель 100. Итого получаем номинал: 100*100 = 10000 Ом или 10 кОм.
- 30S. По таблице смотрим код 30. Он соответствует цифре 200. Буква S — множитель 0,01. Считаем номинал: 200 * 0,01 = 2 Ом.
- 11D. Расшифровка кода 11 — 127, под буквой D зашифрован множитель 1000. Итого получаем 127*1000 = 127 000 Ом или 127 кОм.
В общем, принцип понятен. Ищем код, множитель, перемножаем. В общем, ничего особенно сложного. Простая математика. Если с устным счетом «не очень» помочь может калькулятор. Еще вариант — найти программу, которая расшифровывает коды резисторов.
Таблица маркировки smd резисторов постоянного сопротивления
Код | Знач. | Код | Знач. | Код | Знач. | Код | Знач. |
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 мОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 мОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 мОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 мОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 мОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 мОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 мОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 мОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 мОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 мОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 мОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 мОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 мОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 мОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 мОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 мОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 мОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 мОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 мОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 мОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 мОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 мОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 мОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 мОм |
Если вас интересуют недорогие SMD-резисторы, приобрести их можно на Aliexpress.
Но не соблазняйтесь на подозрительно низкие цены — в таких ситуациях лучше дополнительно ознакомиться с отзывами других покупателей.
Шаги изготовления платы по ТМП
Изготовление ТМП-платы затрагивает как процесс ее проектирования, изготовления, подбор определенных материалов, так и специфические технические средства для припаивания чипов на плату.
- Проектирование и изготовление платы — основа для монтажа. Вместо отверстий для сквозного монтажа делаются контактные площадки для припаивания плоских контактов элементов.
- Нанесение паяльной пасты на площадки. Это можно делать шприцем вручную или с помощью трафаретной печати при массовом изготовлении.
- Точная установка компонентов на плату поверх нанесенной паяльной пасты.
- Помещение платы со всеми компонентами в печь для пайки. Паста оплавляется и очень компактно (благодаря присадкам, увеличивающим поверхностное натяжение припоя) припаивает контакты с одинаковым качеством по всей поверхности платы. Однако критичны требования как ко времени операции, температуре, так и к точности химического состава материалов.
- Окончательная обработка: остывание, мойка, нанесение защитного слоя.
Монтаж платы
Печатная плата
Различаются варианты технологии для серийного и для ручного производства. Массовое производство при условии широкой автоматизации и последующем контроле качества дает и гарантировано высокие результаты.
Однако SMT-технология может вполне уживаться и с традиционным монтажом на одной плате. В этом случае как раз и может быть востребован монтаж SMT вручную.
Резисторы SMD
Резистор — самый распространенный компонент электронных схем. Существует даже специально разработанная схемотехника, которая строится только из транзисторов и резисторов (T-R-логика). Это значит, без остальных элементов построить процессор можно, а вот без этих двух — никак. (Пардон, есть еще ТТ-логика, где вообще одни транзисторы, но некоторым из них приходится играть роль резисторов). Это в производстве больших интегральных схем доходят до таких крайностей, а для поверхностного монтажа все-таки выпускается весь набор необходимых элементов.
Транзисторы
Для столь компактной сборки они должны обладать строго определенными размерами. Каждый SMD-прибор — это маленький параллелепипед с выступающими из него контактами — ножками, или пластинками, или металлическими наконечниками с двух сторон
Важно то, что контакты на монтажной стороне должны лежать строго в плоскости, и на этой плоскости иметь необходимую для пайки площадь — тоже прямоугольную.
SMD-прибор
Размеры резистора: l — длина, w — ширина, h — высота. За типоразмеры берутся важные для монтажа длина и ширина.
Они могут быть кодированы в одной из двух систем: дюймовой (JEDEC) или метрической (мм). Коэффициент пересчета из одной системы в другую — это длина дюйма с мм = 2,54.
Типоразмеры кодируются четырехзначным цифровым кодом, где первые две цифры — длина, вторые — ширина девайса. Причем размеры берутся или в сотых долях дюйма, или в десятых долях миллиметра, в зависимости от стандарта.
Например, код 0603 в JEDEC означает 0,06 дюйма длины и 0,03 дюйма ширины.
А код 1608 в метрической системе означает 1,6 мм длины и 0,8 мм ширины. Применив коэффициент пересчета, легко убедиться, что это один и тот же типоразмер. Однако существуют и другие измерения, которые определяются типоразмером.
Таблица размеров чипов резистора
Описание резисторов МЛТ
Постоянный резистор применяется для обеспечения нормальной работы компонентов электрической схемы в качестве ограничителя тока, делителя напряжения, шунта или нагрузки, монтируется навесным монтажом.
Как выглядят
Металлопленочный резистор состоит из керамической трубчатой основы с нанесенным на нее тонким слоем металлизированной пленки из специального резистивного материала. Величина номиналов сопротивления зависит от состава пленки и числа витков спирали, нарезанной на керамической основе.
По краям трубчатого основания надеты латунные колпачки с медными посеребренными проволочными выводами для монтажа в схему.
Для защиты от механических повреждений токоведущий слой покрыт влагостойкой органической эмалью с нанесенной на ней маркировкой.
Чаще всего эмалевое покрытие красного цвета с нанесенной на него буквенно-цифровой или цветовой маркировкой.
Какие особенности имеют
По способу изготовления резисторы МЛТ могут быть с нарезкой спиральной канавки и безнарезные. Наиболее надежными считаются безнарезные, омическое сопротивление которых до 2кОм.
Во время работы все резисторы нагреваются, рассеивая выделяющееся тепло. Расположение маломощных металлопленочных сопротивлений рядом с более мощными вызывает интенсивный нагрев и преждевременный выход элемента из строя – оптимальным считается расположение резистивных элементов на расстоянии двух диаметров между ними.
Эксплуатационный запас советских сопротивлений велик, однако они подвержены старению – при длительном хранении в отапливаемом помещении происходит окисление и кристаллизация проводящего слоя, отвердевание защитного покрытия.
Когда и кем производились
Металлопленочные резисторы выпускались с 1964 по 1993 годы – это были самые «ходовые» сопротивления в СССР, которые и сейчас используются многими радиолюбителями.
Заводы советской промышленности, занимающиеся выпуском металлопленочных резисторов – Нижегородский (сейчас НПО ЭРКОН), «Кермет» в Пензенской области.
Тип резистора | Номинальная мощность, Вт | Номинальное сопротивление | Предельные рабочие напряжения |
МЛТ-0,125 | 0,125 | 8,2 Ом – 3,0 МОм | 200 |
МЛТ-0,25 | 0,25 | 8,2 Ом – 5,1 МОм | 250 |
МЛТ-0,5 | 0,5 | 1 Ом – 5,1 МОм | 250 |
МЛТ-1 | 1 | 1Ом – 10МОм | 500 |
МЛТ-2 | 2 | 1 Ом – 10 МОм | 700 |
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Учитывая малое значение допуска на величину номинального сопротивления резистора, можно с достаточной степенью точности утверждать, что при наихудшем сочетании допусков на резисторы допуск на значение К в два раза больше допуска на номинал резистора. Если же вам что-то непонятно, пишите мне!
Маркировка SMD-резисторов: хитрости вычисления номинала
Аббревиатура SMD часто встречается при монтаже или изучении электронных схем. Это определённый тип компонентов, пришедших на замену классической сквозной пайке.
Так как размеры SMD-составляющих значительно отличаются от обычных, то и маркировка на них используется другая.
В этой статье мы расскажем, как прочитать маркировку SMD-резисторов, что это вообще такое, и какие способы определения номинала существуют.
Из-за своих малых размеров резисторы обладают наиболее компактным способом маркировки — цифровымФОТО: universal-solder.ca
Что такое SMD
SMD – английская аббревиатура, обозначающая Surface Mounted Device, то есть – устройство, монтируемое на поверхность. В целом, под SMD понимается метод нанесения компонентов на печатную плату, который ещё называют поверхностным. Ему противопоставляется классический метод — сквозной монтаж, когда ножки элементов продеваются в отверстия монтажной платы и фиксируются в них.
Поверхностный монтаж очень часто сочетается с простым «сквозным»ФОТО: wikimedia.org
SMD подразумевает установку прямо на токопроводящие дорожки платы. Такой подход позволил значительно сэкономить место на плате, уменьшить размер компонентов и, в целом, удешевить и автоматизировать процесс монтажа. Тем не менее, на практике часто встречается гибрид обеих технологий — сквозного монтажа и поверхностного.
Назначение резисторов SMD
Пассивный элемент электрической сети, необходимый для ограничения величины тока, протекающего через неё, называется резистором. Схема питания светодиода требует обязательного последовательного включения резистивного компонента.
Схема питания светодиода
Название этих деталей имеет приставку SMD (Surface Mounted Device) – английская спецификация, говорящая о миниатюрных размерах. При поверхностном монтаже такие устройства припаиваются непосредственно к контактным площадкам на печатной плате. Такой способ не требует индивидуальных отверстий для выводов. Сами выводы, как таковые, отсутствуют. Тем не менее, обладая маленькими габаритами, такие резистивные элементы не уступают другим аналогам ни в мощности, ни в характеристиках.
Маркировка SMD-резисторов: хитрости вычисления номинала
Аббревиатура SMD часто встречается при монтаже или изучении электронных схем. Это определённый тип компонентов, пришедших на замену классической сквозной пайке. Так как размеры SMD-составляющих значительно отличаются от обычных, то и маркировка на них используется другая. В этой статье мы расскажем, как прочитать маркировку SMD-резисторов, что это вообще такое, и какие способы определения номинала существуют.
Что такое SMD
SMD – английская аббревиатура, обозначающая Surface Mounted Device, то есть – устройство, монтируемое на поверхность. В целом, под SMD понимается метод нанесения компонентов на печатную плату, который ещё называют поверхностным. Ему противопоставляется классический метод — сквозной монтаж, когда ножки элементов продеваются в отверстия монтажной платы и фиксируются в них.
SMD подразумевает установку прямо на токопроводящие дорожки платы. Такой подход позволил значительно сэкономить место на плате, уменьшить размер компонентов и, в целом, удешевить и автоматизировать процесс монтажа. Тем не менее, на практике часто встречается гибрид обеих технологий — сквозного монтажа и поверхностного.
Назначение резисторов
Назначение SMD-резисторов то же самое, что и у обычных — преобразование силы тока в напряжение и наоборот с помощью имеющегося у него сопротивления. Таким образом, основная величина, по которой можно определить нужный резистор — сопротивление. Измеряется оно в Омах. Соответственно, при маркировке на элементе указывается именно количество Ом.
Размеры и обозначения
SMD-резисторы имеют компактные размеры. Самый маленький типоразмер может быть всего 0,4×0,2 мм. Поэтому от стандартной цветовой маркировки решили отказаться. Вместо неё сейчас используется три разных типа обозначений: 3 цифры, 4 цифры и 2 цифры и буква. Но логика распознавания элемента у них одна.
3 и 4 цифры
Всё довольно просто и логично — есть три цифры. Две первые — мантисса, третья — степень, в которую нужно возвести число 10 для получения множителя. Перемножив это всё, получим итоговое сопротивление.
Например, на резисторе стоит 312. 31 — основание, 2 — степень числа 10. В итоге, получается нехитрое выражение 31·10² или 31·100 = 3100 Ом. На самом деле, чтобы не проводить всех этих математических операций, можно просто запомнить, что к первым двум цифрам нужно прибавить указанное третьей цифрой количество нулей. То есть, к 31 просто добавить два нуля.
Маркировка с четырёхзначными числами не отличается методом расшифровки. Просто применяются они для резисторов с точностью в 1%. Например, 7920 будет обозначать всего 792 Ом, так как 10° = 1, и после умножения получаем 792. Или используя более простую методику — после 792 нужно добавить 0 нулей, то есть ни одного.
Цифры и буквы в обозначениях
Тут всё немного усложняется. Во-первых, встречается два вида обозначений: сначала цифры, потом буква и наоборот. Первый используется для маркировки элементов с точностью 1% из номинального ряда Е96. Второй встречается на компонентах с точностью 2%, 5% и 10% из номинальных рядов Е12 и Е24.
Обозначение с двумя цифрами и буквой чем-то похоже по логике на простые цифровые обозначения. Но, так как номиналы сопротивлений берутся из номинального ряда Е96, то закономерности в символах обнаружить не удастся, понадобится таблица. Итак, первые две цифры обозначают код, согласно которому в таблице нужно найти соответствующую мантиссу. Буква — это степень десяти. Вариантов здесь немного и есть хоть какая-то логика: S или Y дают 10־², R или X – 10־¹. Затем по нарастанию: А — 10°или 1, B – 10¹, C – 10² и так далее.
Например, имеем резистор 49R. Смотрим в таблицу — получаем мантиссу 316. Литера R говорит нам, что степень десяти равна -1. То есть, нужно не умножать на 10, а, наоборот — разделить. В итоге, получаем значение 31,6 Ом.
Второй вариант цифро-буквенных обозначений подчиняется тому же принципу, только здесь в цифровом коде ещё зашифрована точность резистора.
Как видно, способ маркировки только цифрами гораздо удобнее и проще, хотя и не позволяет обозначить некоторые номиналы резисторов.
Онлайн-сервисы
На сайте можно узнать номинал резистора, и, наоборот, как будет выглядеть маркировка для определённого сопротивления.
https://www.asutpp.ru/kalkulyator-markirovki-smd-rezistorov.html — аналогичный сервис, с тем же функционалом.
Тоже самое делает сервис https://allcalc.ru/node/940. В общем, подобных инструментов в сети предостаточно.
ИнженерияОбзор системы тёплый пол Devi: особенности, плюсы и минусы
ИнженерияВиды шаровых муфтовых кранов: назначение, устройство, некоторые модели
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
Примеры расшифровки цифробуквенной маркировки SMD резисторов
Для определения параметра резисторов не обязательно запоминать таблицы значений. В Интернете размещено много онлайн-калькуляторов, также доступно к скачиванию множество оффлайн-программ. Но если понять принципы маркировки, возможно определять значения сопротивления и точности, не прибегая к справочникам, после небольшой тренировки это получается с первого взгляда. Для закрепления понимания основ надо разобрать несколько практических примеров.
Резисторы 101, 102, 103, 104
Во всех этих примерах численное значение сопротивления одинаково, и равно 10, но множители в каждом случае отличаются:
- 101 – 10 Ом надо умножить на 101, то есть на 10, или приписать к значению один 0 — в качестве итога получится 100 Ом;
- 102 – 10 Ом надо умножить на 102, то есть на 100, или приписать к значению два нуля — получится 1000 Ом (=1 кОм);
- 103 – 10 Ом надо умножить на 103, то есть на 1000, или приписать к значению три нуля — получится 10000 Ом (=10 кОм);
- 104 – 10 Ом надо умножить на 104, то есть на 10000, или приписать к значению четыре нуля — получится 100000 Ом (=100 кОм).
Легко запомнить, что для трехсимвольной кодировки последняя цифра 3 обозначает килоомы, а 6 — мегаомы – это дополнительно облегчит визуальное считывание маркировки.
Резисторы 1001, 1002, 2001
Если на корпус электронного компонента нанесено 4 цифры, это означает, что его точность не ниже 1%. А номинал также состоит из мантиссы и множителя, который задается последним символом:
- 1001 – 100 Ом надо умножить на 101, то есть на 10, что равносильно приписыванию к мантиссе одного нуля — в качестве итога получится 1000 Ом (1 кОм);
- 1002 – мантисса равна также 100 Ом, но множитель равен 102=100 (надо приписать два нуля), а номинал будет равен 10000 Ом=10 кОм;
- 2001 – в данном случае 200 Ом надо умножить на 101=10, номинал равен 2000 Ом=2 кОм.
Принципиально считывание этой маркировки не отличается от трехсимвольной.
Резисторы r100, r020, r00, 2r2
Если на резисторе нанесено обозначение с буквой R, её можно сразу мысленно заменить на десятичную запятую:
- R100 означает «,100» — приписывая перед запятой ноль, получается значение 0,100 Ом = 0,1 Ом (резистор с 1% точностью).
- R020 – по тому же принципу «,020» превращается в 0,020 Ом=0,02 Ом;
- R00 означает резистор с нулевым сопротивлением – такие элементы применяются в качестве перемычек на плате (зачастую это технологичнее при производстве);
- 2R2 – три символа означают точность 2% и ниже, номинал равен 2,2 Ом.
Если значение сопротивления 2%, 5% или 10% элемента меньше 1 Ом, перед буквой R наносят ноль (например, 0R5 будет означать 0,5 Ом).
Резисторы 01b, 01c
Для определения номинала надо обратиться к таблицам мантисс и множителей:
- 01B — кодом 01 обозначается резистор с «базовым» сопротивлением 100 Ом, множитель B=10, итоговое сопротивление 100х10=1000 Ом=1кОм;
- 01C – этот вариант отличается от предыдущего только множителем (С эквивалентно 100), а полный номинал равен 100х100=10000 Ом = 10 кОм.
Из приведенных примеров видно, что один и тот же номинал резистора в зависимости от его исполнения может быть маркирован по-разному. Так, сопротивление 1 кОм может иметь кодировку:
- 102 – для 2-10% ряда;
- 1001 – для 1% ряда;
- 01B – для малогабаритных резисторов 1% ряда.
Данная система обозначений применяется на 90+ процентах безвыводных приборов, выпускаемых во всем мире. Но гарантии, что какой-либо изготовитель не применяет свою систему маркировки, нет. Поэтому, в случае сомнений, самый надежный способ – измерить реальное значение сопротивления мультиметром. После небольшой тренировки это не составит сложности. Тот же способ является единственным для SMD-элементов наименьших размеров – на них маркировка не наносится вообще.
Определение номинального значения сопротивления резистора по маркировке цветовыми полосами: онлайн калькулятор
Как расшифровать маркировку конденсатора и узнать его ёмкость?
Маркировка проводов и кабелей и расшифровка марки
Что такое резистор и для чего он нужен?
Что такое варистор, основные технические параметры, для чего используется
Что означает степень защиты IP — расшифровка, таблица, примеры использования