Чему равна электроемкость конденсатора?

Электрическая емкость конденсатора

Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности. В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя. Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

Будет интересно Что такое статическое электричество и как от него избавиться

С = q/ϕ.

За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества. Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника. Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

С = q/ U.

1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.

Будет интересно Законы Кирхгофа простыми словами: определение для электрической цепи

Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.

Строение конденсатора.

Соединение конденсаторов

Чтобы получить необходимую фиксированную емкость (без подстроечных компонентов) применяют параллельное, последовательное и комбинированное сочетания нескольких стандартных конденсаторов.

Расчёт последовательного соединения

В этом варианте на каждой паре пластин накапливается одинаковый заряд (q1 = q2 =…=qn). По закону Кирхгофа Uобщ= U1 + U2 +…+ Un. По базовым формулам и с учетом сделанных замечаний можно эквивалентное значение емкости (Сэкв) узнавать двумя способами:

  • Сэкв = q/ (U1 + U2 +…+ Un);
  • Cэкв = 1/С1 + 1/С2 +…+1/Сn.

Расчёт параллельного соединения

При таком подключении Uип =U1 = U2 =…= Un, общий заряд вычисляют по сумме накопленных значений на каждой рабочей паре пластин.

Эквивалентную емкость вычисляют по формуле:

Cэкв = q/U =С1 + С2 +…+Сn.

Электроемкость в физике: определение

C = qU C — электроемкость, Ф q -; заряд  одного из  проводников,  Кл U — разность  потенциалов  между  проводниками, В

Различают электроемкость уединенного проводника и электроемкость системы проводников.

Уединенный проводник — это проводник, расположенный вдали от других тел так, что эти тела не оказывают на проводник никакого влияния.

Изучение электроемкости связана с проводниками и наибольшее внимание уделяют проводникам под названием конденсаторы. Плоский конденсатор — это две плоские пластины, расположенные на небольшом расстоянии друг от друга, между которыми проложен диэлектрик

Плоский конденсатор — это две плоские пластины, расположенные на небольшом расстоянии друг от друга, между которыми проложен диэлектрик.

При работе с плоскими конденсаторами электрическое поле располагается в большей степени между пластинами, но небольшая часть этого электрического поля будет рассеиваться вокруг них.

Поле рассеивания — это часть электрического поля, которая располагается вблизи конденсатора.

Конденсаторы бывают сферическими и цилиндрическими.

Сферический конденсатор — это система из двух концентрических сфер, радиусы которых равны R1 и R2 соответственно.

Цилиндрический конденсатор — это система из двух цилиндрических проводников, длина которых равна L, а радиусы R1 и R2.

Проводники можно соединять между собой. Такая конструкция из проводников называется батареей.

При параллельном соединении напряжение всех конденсаторов будет одинаковым (U1=U2 = U), а заряды будут следующими: q1=C1U и  q2=C2U.

Если элементы в батарее конденсаторов соединены параллельно, то для расчета электроемкости нужно сложить емкости ее отдельных элементов.

При последовательном соединении двух конденсаторов заряды обоих будут равны (q1=q2=q), напряжения будут равны:  U1=-

Напряжение в такой системе будет U=U1+U2.

Если элементы в батарее конденсаторов соединены последовательно, то для расчета общей электроемкости нужно сложить величины, обратные емкостям каждого из конденсаторов.

Разряд конденсатора с выделением тепла

Переходные процессы – сложная тема, сложная даже для студентов, тем более – для школьников. Помните: постоянный ток не протекает через конденсатор. Напряжение на конденсаторе определяется его подключением: если параллельно резистору – то напряжение такое же, как на резисторе, если последовательно с источником – то конденсатор зарядится до ЭДС источника, после чего ток исчезнет. Если дать конденсатору возможность разрядиться – то энергия, запасенная в нем, превратится в тепло на резисторе.

Задача 1. Источник постоянного тока с ЭДС В и внутренним сопротивлением Ом подсоединен к параллельно соединенным резисторам Ом, Ом и конденсатору. Определите емкость конденсатора С, если энергия электрического поля конденсатора равна мкДж.

К задаче 1

Определить емкость легко из энергии конденсатора, только надо знать напряжение:

Объединим резисторы в один:

Ток в неразветвленной части цепи равен

Напряжение на внутреннем сопротивлении тогда равно

Тогда на резисторах и конденсаторе напряжение

Емкость равна

Ответ: мкФ. Задача 2. Источник постоянного напряжения с ЭДС 100 В подключен через резистор к конденсатору переменной емкости, расстояние между пластинами которого можно изменять (см. рис.). Пластины медленно раздвинули. Какая работа была совершена против сил притяжения пластин, если за время движения пластин на резисторе выделилось количество теплоты 10 мкДж и заряд конденсатора изменился на 1 мкКл?

К задаче 2

У конденсатора была энергия до того, как пластины раздвинули – пусть . И после тоже была – пусть . В процессе раздвижения пластин совершили работу (которую надо найти), и, так как заряд уменьшился (а он именно уменьшился, так как напряжение осталось тем же), то источник тоже совершил работу. Поэтому закон сохранения энергии запишется так:

Заряд на конденсаторе сначала: , потом – . Тогда изменение заряда равно

Работа источника

Тогда наш закон сохранения можно переписать:

Ответ: 60 мкДж Задача 3. Заряженный конденсатор мкФ включен в последовательную цепь из резистора Ом, незаряженного конденсатора мкФ и разомкнутого ключа К (см. рис.). После замыкания ключа в цепи выделяется количество теплоты мДж. Чему равно первоначальное напряжение на конденсаторе ?

К задаче 3

Первоначально на конденсаторе есть заряд:

После замыкания ключа заряд разделится:

Но напряжение на конденсаторах одно и то же:

Тогда

Откуда:

Энергия до замыкания, запасенная в конденсаторе , сохраняется:

Ответ:

Задача 4. В электрической схеме, показанной на рисунке, ключ К замкнут. ЭДС батарейки В, сопротивление резистора Ом, заряд конденсатора 2 мкКл. После размыкания ключа К в результате разряда конденсатора на резисторе выделяется количество теплоты 20 мкДж. Найдите внутреннее сопротивление батарейки .

К задаче 4

Сначала на конденсаторе напряжение такое же, как на резисторе (потому что они включены параллельно):

Определим ток. Он замыкается в контуре , потому что постоянный ток не течет через конденсатор:

Тогда напряжение на резисторе и конденсаторе:

С другой стороны, когда ключ разомкнется, вся энергия, запасенная в конденсаторе, рассеется в виде тепла через резистор:

То есть

Приравняем:

А внутреннее сопротивление равно

Ответ:

Влияют ли геометрические размеры источника питания на величину его удельной мощности?

Прежде всего, необходимо обратить внимание на то, что увеличение КПД источника питания обычно всегда приводит к уменьшению его геометрических размеров, ведь удельная мощность, фактически, равна отношению выходной мощности устройства к объему «коробки», занимаемой его компонентами (длина × ширина × высота). При проектировании любого источника питания разработчики, в первую очередь, стараются уменьшить размеры пассивных силовых компонентов, принципиально необходимых для его работы: конденсаторов, дросселей и трансформаторов

Использование приборов, изготовленных из полупроводников с широкой запрещенной зоной (Wide-Bandgap, WBG), в том числе и транзисторов, изготовленных по технологиям GaN-на-SiC, позволяет повысить рабочую частоту преобразования современных источников питания и, тем самым, уменьшить размеры пассивных компонентов. Однако увеличение частоты переключений приводит к увеличению динамических потерь, что, в свою очередь, приводит к увеличению температуры полупроводниковых приборов. На практике эти проблемы решаются как с помощью инновационных систем охлаждения, так и с помощью специализированных схем управления силовыми транзисторами.

Кроме того, члены PSMA разработали несколько оригинальных методов интеграции на основе объемной компоновки, использование которых позволяет сократить объем «коробки», занимаемой источником питания.

Объемный монтаж

Размеры печатной платы ограничены во многих приложениях, поэтому специалисты PSMA пошли по пути вертикального размещения элементов источников питания (3D-stacking). В этом случае контроллер, активные и пассивные компоненты, в том числе и индуктивные, располагаются друг над другом в виде сложной многослойной конструкции.

При использовании объемного монтажа силовые элементы устанавливаются на нескольких печатных платах, причем некоторые компоненты даже могут устанавливаться в плоскости платы в специальных отверстиях. Взаимное расположение печатных плат внутри литого корпуса также тщательно продумывается и оптимизируется. В конечном итоге, использование объемного монтажа позволяет увеличить удельную мощность готового модуля и значительно уменьшить общую длину соединений между компонентами.

Кроме того, в новых разработках активно используются и другие передовые технологии, в числе которых и методы, позволяющие уменьшить размеры печатных плат до такой степени, когда можно полностью отказаться от их применения, что также позволяет дополнительно увеличить объемную удельную мощность (Вт/см3).

Емкость

Емкостью конденсатора является физическая величина, которая определяет отношение между накопленным зарядом на обкладках и разностью потенциалов между ними.

В системе «СИ» емкость конденсатора и ее единица измерения — Фарад. В формулах для ее обозначения используется буква Ф (F). Однако емкость конденсатора редко измеряется в Фарадах, потому что это довольно большая величина. Чаще всего применяют ее кратные и дольные значения.

Значение электроемкости конденсатора всегда можно найти в маркировке устройства, которая нанесена на его корпус.

На схеме элемент обозначается буквой «С». Обозначение емкости является обязательным условием, ведь это позволит упростить процесс подбора необходимой электродетали для схемы.

Почему электролитические конденсаторы выходят из строя и что делать

Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.

Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва

Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.

Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.

Для улучшения отвода тепла ставят радиаторы

Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.

Как подобрать замену

Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.

Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер

Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.

Что будет, если поставить конденсатор большей ёмкости?

Часто приходит в голову идея поставить вместо сгоревшего или вздувшегося конденсатор большей ёмкости. Ведь он должен меньше греться. Так, во всяком случае, кажется. Ёмкость практически никак не связана со степенью нагрева корпуса. И в этом выигрыша не будет.

Устройство электролитического конденсатора

По нормативным документам отклонение номинала конденсаторов допускается в пределах 20%. Вот на эту цифру можете спокойно ставить больше/меньше. Но это может привести к изменениям в работе устройства. Так что лучше найти «родной» номинал. И учтите, что не всегда можно ставить большую ёмкость. Можно если конденсатор стоит на входе и сглаживает скачки питания. Вот тут большая ёмкость уместна, если для её установки достаточно места. Это точно нельзя делать там, где конденсатор работает как фильтр, отсекающий заданные частоты.

Можно менять на ту же ёмкость, но чуть более высокое напряжение. Это имеет смысл. Но размеры такого конденсатора будут намного больше. Не в любую плату получится его установить. И учтите, что корпус его не должен соприкасаться с другими деталями.

Почему удельная мощность является ключевым параметром?

Удельная мощность является ключевым параметром источников питания, особенно для приложений с ограниченными размерами. Примером таких приложений являются центры обработки данных, в которых информационное оборудование заполняет все доступное пространство. Поскольку количество обрабатываемой информации постоянно увеличивается, что приводит к неизбежному увеличению энергопотребления, то для источников питания с низкой удельной мощностью, не способных пропустить через выделенный объем требуемое количество энергии, в подобных приложениях может просто не оказаться места.

Еще одной областью, где удельная мощность играет ключевую роль, является альтернативная энергетика, которая с каждым годом становится все более необходимой для жителей Земли. В этом случае удельная мощность показывает, какое количество энергии можно получить с одного квадратного метра в течение некоторого времени (Вт/м2).

Накопление электрической энергии

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

В заряженном конденсаторе накоплена (аккумулирована) электрическая энергия. Эта энергия конденсатора равна работе, необходимой для зарядки конденсатора. Процесс зарядки конденсатора состоит, по сути, в том, что заряд с одной пластины переносится на другую. Именно это совершает источник напряжения, когда его подключают к конденсатору. Сначала, когда конденсатор не заряжен, для переноса первой порции заряда не требуется работы. Но когда на каждой из пластин уже имеется заряд, для пополнения его приходится совершать работу против сил электрического отталкивания. Чем больше накопленный пластинами заряд, тем большую работу, необходимо совершить для его увеличения. Если на пластинах существует разность потенциалов V

, работа по переносу элемента зарядаdq равнаdW = Vdq . ПосколькуV= q/C , гдеС — емкость конденсатора, тогда работа по его заряду составит:

Итак, мы можем сказать, что энергия, запасенная, или аккумулированная, конденсатором, равна

если заряды обкладок конденсатора емкостью С

равны соответственно+Q и-Q . А так какQ = СV , гдеV — разность потенциалов между обкладками, мы можем написать

Пример 25.5

. Конденсатор емкостью 20 мкФ подключен к батарее напряжением 12 В. Какую энергию может запасти конденсатор?

Решение

. Согласно (25.5),

Энергия не является «вещественной субстанцией», поэтому она вовсе не должна быть где-то сосредоточена. Тем не менее принято считать, что она запасена электрическим полем между пластинами. Для примера выразим энергию плоского конденсатора через напряженность электрического поля. Мы показали , что между параллельными пластинами существует приблизительно однородное электрическое поле Е

и его напряженность связана с разностью потенциалов соотношениемV = Ed , гдеd — расстояние между пластинами. Кроме того, согласно (25.2), емкость плоского конденсатора равнаС = s0 A/d . Тогда

Произведение Ad

характеризует объем, занимаемый электрическим полемЕ . Разделив обе части формулы на объем, получим выражение для энергии, запасенной в единице объема, илиплотности энергииu :

Плотность электростатической энергии, запасенной в любой части пространства, пропорциональна квадрату напряженности электрического поля в этой области

Выражение (25.6) получено для частного случая плоского конденсатора. Можно показать, однако, что оно справедливо для любой области пространства, в которой существует электрическое поле.

Продолжение следует. Коротко о следующей публикации:

Диэлектрики

. В конденсаторах между пластинами проложен изолирующий материал (диэлектрик), например слюда или пластмассовая пленка. Этим достигается сразу несколько целей. Во-первых, диэлектрики лучше противостоят электрическому пробою, чем воздух, и к конденсатору можно приложить более высокое напряжение. Во-вторых, при наличии диэлектрика пластины можно расположить ближе друг к другу без опасения, что они могут соприкасаться. В третьих, ёмкость конденсатора увеличится в несколько раз благодаря электрической поляризации диэлектрика.

Альтернативные статьи: Переменный ток, Закон Ома.

Замечания и предложения принимаются и приветствуются!

Емкость или накопленный заряд?

Когда говорят или пишут об автомобильных аккумуляторах, часто упоминают величину, которую называют емкостью аккумулятора и выражают в ампер-часах (для небольших аккумуляторов — в миллиампер-часах). Но, строго говоря, ампер-час не является единицей емкости. Емкость в теории электричества измеряют в фарадах. А ампер-час — это единица измерения заряда! То есть характеристикой аккумулятора нужно считать (и так это и называть) накопленный заряд.

Следует обратить внимание, что даже из определения кулона видно, что заряд характеризует некий процесс, а именно процесс прохождения тока по проводнику. То же самое следует даже из названия другой величины: один ампер-час — это когда ток силой в один ампер протекает по проводнику в течение часа

На первый взгляд может показаться, что тут какая-то нестыковка. Ведь если мы говорим о сохранении энергии, то накопленная в любом аккумуляторе энергия должна измеряться в джоулях, поскольку именно джоуль в физике служит единицей измерения энергии. Но давайте вспомним, что ток в проводнике возникает только тогда, когда имеется разность потенциалов на концах проводника, то есть к проводнику приложено напряжение. Если напряжение на клеммах аккумулятора равно 1 вольту и по проводнику протекает заряд в один ампер-час, мы и получаем, что аккумулятор отдал 1 В · 1 А·ч = 1 Вт·ч энергии.

Таким образом, применительно к аккумуляторам правильнее говорить о накопленной энергии (запасенной энергии) или о  накопленном (запасенном) заряде. Тем не менее, поскольку термин «емкость аккумулятора» широко распространен и как-то более привычен, будем использовать и его, но с некоторым уточнением, а именно, будем говорить про энергетическую емкость.

Используя это понятие, попытаемся приблизительно посчитать и сравнить энергетическую емкость различных типов накопителей энергии.

Расчёт ёмкости плоских конденсаторов

Конденсатор — для чего нужен, устройство и принцип работы

В идеальных условиях для определения емкости конденсатора (C) можно применить формулу:

С0 = q/ U.

Диэлектрические свойства промежуточного слоя учитывают дополнением C = C0 * e.

Базовая единица (фарад или сокращенно Ф) слишком велика для типовых электротехнических схем. Поэтому применяют кратные уменьшительные приставки:

  • миллифарад (мФ) – 10-3 Ф;
  • микрофарад (мкФ) – 10-6 Ф;
  • нанофарад (нФ) – 10-9 Ф;
  • пикофарад (пФ) – 10-12 Ф.

Емкость один фарад соответствует накопленному единичному заряду (1 Кл), который создает разницу потенциалов на пластинах 1 В. По формуле емкости шара можно вычислить потенциал Земли –700 микрофарад.

Конденсатор в цепи электрического тока

Принцип работы конденсатора простой – подается напряжение и накапливается заряд. Накопитель по-разному ведет себя в двух вариантах электрической цепи.

Постоянного

Если в цепь с присоединенным к ней конденсатором подать ток, то стрелка на амперметре придет в движение, после чего быстро вернется в предыдущее положение. Это связано с тем, что прибор быстро заряжается и ток исчез. Через обкладки разделенные диэлектриком постоянный ток проходить не может. Практическое применение конденсатора в такой цепи вызывает много вопросов. В условиях постоянного тока конденсатор функционирует, но непродолжительное время. Переходные процессы в виде зарядки и разрядки снимают все сомнения. В электронных схемах на постоянном токе конденсаторы один из самых распространенных компонентов.

Переменного

При подключении переменного напряжения полюса конденсатора меняют плюс на минус с частотой подачи напряжения. В данном случае электроны передвигаются сначала в одну, а потом в другую. На обкладках при такой смене остаются излишки заряда, которые собственно и создают ток во внешней цепи.

Как образом технология GaN-на-SiC может увеличить удельную мощность?

Теплопроводность карбида кремния (SiC) в три раза больше, чем у кремния (Si), поэтому нитрид-галлиевые (GaN) полупроводниковые приборы на подложках из карбида кремния (GaN-на-SiC) способны работать при более высоких напряжениях и рассеивать большую мощность, по сравнению с нитрид-галлиевыми аналогами, созданными на подложках их чистого кремния (GaN-на-Si). Эта особенность является ключевой для телекоммуникационного оборудования и устройств с беспроводными интерфейсами, требующих эффективного отвода тепла.

Создать устройства с высокой удельной мощностью на основе кремниевых полупроводниковых приборов принципиально невозможно. Однако теперь разработчикам доступны компактные нитрид-галлиевые транзисторы с малым уровнем потерь, поэтому замена кремниевых приборов на нитрид-галлиевые позволяет одновременно и уменьшить количество выделяемого тепла, и, за счет хорошей теплопроводности карбида кремния, облегчить температурные режимы мощных компонентов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector