Электроэнергия и источник питания
Теперь давайте подробнее рассмотрим нашу схему. Для удобства немного расширим его по пространству, игнорируя ГОСТ на обозначение источника питания:
Как мы помним из прошлой статьи, электрический ток идет из точки с более высоким потенциалом, то есть из плюса, в точку с меньшим потенциалом, то есть из минуса. Или проще: от большего к меньшему. На данный момент наш переключатель разомкнут. Можно сказать, что мы «разрубили» нашу схему переключателем. Электрики и электронщики говорят, что цепь «сломана». Нет тока, свет не горит.
Но здесь ловким движением руки мы ловко нажимаем на переключатель, и наша цепь замыкается:
Дорога открыта для электрического тока и течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.
Вроде бы все понятно, но не до конца. Кто или что заставляет лампочку светиться? Он не только сверкает, но и согревает!
Что было первым во Вселенной? Говорят время, даже если я думаю энергия). Энергия ниоткуда не приходит и никуда не исчезает. Это закон сохранения энергии, так что «бреют» любители вечных двигателей).
В этом эксперименте наша лампочка загорается и нагревается. Оказывается, лампочка излучает и тепловую, и световую энергию. Вы ведь не забыли, что лучи света передают энергию? Например, в повседневной жизни мы используем солнечные батареи, чтобы получать электрический ток от лучей.
Но теперь вопрос в следующем. Если лампочка излучает световую и тепловую энергию, откуда она ее берет? Очевидно из источника энергии. Фраза «источник энергии» уже говорит сама за себя. Наша лампочка питается напрямую от источника по проводке. Энергия, протекающая по проводам, называется электричеством.
А откуда БП? Здесь уже есть несколько способов выработки электроэнергии. Это может быть падающая струя воды, которая вращает мощные лопасти поворотного стола, который работает как генератор. Это могут быть химические реакции в аккумуляторах и акумах. Также это может быть солнечная панель или даже некий элемент типа Пельтье, способный генерировать электрический ток под действием разницы температур. Способов много, но эффект один. Поднимите ЭДС.
Каким образом электрический ток доходит до наших домов?
После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно «подтолкнуть». А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.
Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.
Формула механической работы
Представим, что нам нужно поднять все тот же шар не на 50 см, а на 100 см. Необходимо совершить работу, чтобы поднять его сначала на первую половину дистанции, а затем на вторую. Всякий раз будет совершаться одинаковая работа, но общая работа будет в два раза больше. Значит, работа прямо пропорциональна расстоянию перемещения тела. Поэтому физики договорились обозначить величину F*s буквой А и назвать ее работой силы. Выражение F*s как раз и будет прямо пропорционально силе и перемещению тела.
A=F*s — это формула работы в физике. A — искомая величина силы, приложенной к телу, а s — путь, пройденный телом. Однако бывают ситуации, когда сила приложена к телу, а оно не перемещается. В нашем третьем случае тело перемещается в том же направлении, в котором приложена сила. Поэтому точнее будет сказать, что s — это перемещение тела в направлении действия силы. Сформулируем определение: работа в физике — это величина, равная произведению модуля силы на перемещение тела в направлении действия силы.
Мощность электрического тока
В обыденной жизни нередко нам приходится менять электрические лампочки в люстрах или настольных лампах
При этом возникает вопрос: какую лампочку выбрать? Как известно, лампочки различаются не только по своему внешнему виду и устройству, но и по такому важному параметру, как мощность
МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА
Действие тока характеризуется не только работой, но и мощностью. Из курса физики 7 класса вы знаете, что мощность равна отношению совершённой работы ко времени, в течение которого эта работа была совершена. Мощность в механике принято обозначать буквой N, электрическая мощность обозначается буквой Р. По аналогии с механикой электрическая мощность — это физическая величина, характеризующая быстроту совершения работы электрическим током: P = A/t
Но работа тока равна произведению напряжения на силу тока и на время его протекания: А = Ult. Поэтому мощность тока равна:
Таким образом, мощность электрического тока равна произведению напряжения на силу тока в цепи:
Р = UI. (1)
ЕДИНИЦЫ МОЩНОСТИ ЭЛЕКТРИЧЕСКОГО ТОКА
За единицу мощности принят ватт (1 Вт): 1 Вт = 1 В • 1 А.
Зная мощность электрического тока, легко определить работу тока за заданный промежуток времени: А = Pt.
Единицей работы электрического тока является джоуль (1 Дж): 1 Дж = 1 Вт • 1 с.
Эту единицу работы неудобно использовать на практике, так как работа тока совершается в течение длительного времени (несколько часов и более). Поэтому часто используется внесистемная единица работы: ватт-час (Вт • ч) или киловатт-час (кВт • ч):
ЗАВИСИМОСТЬ МОЩНОСТИ ОТ СПОСОБА ПОДКЛЮЧЕНИЯ ПОТРЕБИТЕЛЕЙ ТОКА
Мы знаем, что для настольной лампы чаще всего используются лампочки 25—60 Вт, поскольку они дают достаточно света при включении в сеть, а лампы мощностью 150—200 Вт используют для освещения больших пространств, подъездов, улиц.
Однако всегда ли лампочка большей мощности будет гореть ярче лампы, имеющей меньшую мощность? Для ответа на поставленный вопрос решим следующую задачу. Пусть имеются две лампочки, рассчитанные на напряжение не больше чем 6 В, но различающиеся по мощности (одна лампочка имеет мощность 3 Вт, а другая — 1,8 Вт). Какая из ламп будет гореть более ярко при их включении в цепь двумя способами — параллельно и последовательно? Напряжение источника тока в цепи равно в обоих случаях 6 В.
Обозначим мощность первой лампочки (номинальная мощность) Р1ном = 3 Вт, а мощность второй лампочки P2ном = 1,8 Вт. Чем объяснить, что лампочка в 1,8 Вт при последовательном соединение горит ярче лампы в 3 Вт?
Из формулы (1) с учётом закона Ома нетрудно получить другое выражение для мощности:
Р = U2/R (2)
Из формулы (2) находим сопротивление каждой лампочки: R1 = 12 Ом, R2 = 20 Ом. При последовательном соединении ламп сила тока, протекающего через них, одинакова: I1 = I2 = I. Поэтому тепловая мощность каждой лампы будет отличной от номинальной: Р1 = l2R1, Р2 = l2R2.
Поскольку R2 > R1 то Р2 > Р1, т. е. лампа, рассчитанная на мощность 1,8 Вт, будет гореть ярче, чем лампа, рассчитанная на мощность 3 Вт.
При параллельном соединении ламп наблюдается другая картина. В этом случае напряжение на каждой из ламп одинаково: U1 = U2 = U. При этом расчёт мощности нужно проводить по формуле (2). Отсюда следует, что лампа, рассчитанная на мощность 3 Вт, будет гореть ярче лампы, рассчитанной на мощность 1,8 Вт.
Атмосферные электрические заряды (молнии) могут иметь напряжение до 1 миллиарда вольт, а сила тока молнии может достигать 200 тысяч ампер. Время существования молнии оценивается от 0,1 до 1 с. Температура достигает б—10 тысяч градусов Цельсия.
Несложно посчитать, что мощность молнии при таких условиях равна 200 ГВт, а выделяемая энергия составляет около 200 ГДж.
Вы смотрели Конспект по физике для 8 класса «Мощность электрического тока».
Вернуться к Списку конспектов по физике (Оглавление).
Просмотров:
2 759
Формула силы тока
Формула для чайников будет выглядеть вот так:
где
I — собственно сила тока, Амперы
N — количество электронов
t — период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды
Более правильная (официальная) формула выглядит вот так:
где
Δq — это заряд за какой-то определенный промежуток времени, Кулон
Δt — тот самый промежуток времени, секунды
I — сила тока, Амперы
В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.
Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).
Если преподу не понравится ваш ответ, то скажите типа что-то этого:
Сила тока — это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.
КПД теплового двигателя
Максимальным КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, характеризуются тепловые двигатели, работающие по циклу Карно. В этом случае максимальный КПД составляет:
ηk = T1-T2 T1, где
T1 — это температура нагревателя,
T2 — температура холодильника.
Цикл Карно строится на четырех обратимых процессах, два из них основаны на постоянной температуре (изотермические), а два — на постоянной энтропии (адиабатные).
Суть изометрического расширения строится на том, что в начале работы рабочее тело имеет температуру нагревателя. Когда рабочее тело расширяется, то его температура не падает благодаря передаче от нагревателя. Исходя из вышесказанного можно сделать вывод, что расширение осуществляется изотермически, то есть при постоянной температуре. За счет этого объем рабочего тела, которое осуществляет механическую работу, можно увеличить. Мощность энергии при этом возрастает.
Адиабатическое расширение в свою очередь представляет рассоединение рабочего тела от нагревателя. При этом теплообмен с окружающей средой продолжает расширяться. Ключевым моментом является тот факт, что температура тела уменьшается до температуры холодильника. В подобных случаях тело осуществляет механическую работу, а энтропия остается неизменной.
Изометрическое сжатие — это когда рабочее тело приводится в контакт с холодильником и от этого, под действием внешней силы, отдавая холодильнику количество теплоты, начинает изотермически сжиматься. Над телом совершается работа, и его энтропия уменьшается.
Суть адиабатического сжатия заключается в том, что рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остается постоянной.
Ниже визуально представлена вся суть цикла Карно:
По закону сохранения энергии и по причине энергетических потерь, которые невозможно устранить, КПД реальных систем в любом случае меньше, чем единица. Таким образом, отсутствует возможность получить полезной работы больше или столько, сколько затрачено энергии. Наглядным примером является расход топлива. Например, из 100 л. только 40 л. выполняют полезную работу, а 60 затрачивается впустую на преодоление различного рода препятствия.
Что касается закона сохранения энергии в пределах одного пространства энергия не может исчезнуть или появиться ниоткуда. В данном случае она из одной формы переходит в другую.
КПД котлов, которые функционируют на топливе органического происхождения, определяют в зависимости от низшей теплоты сгорания. При этом предполагается, что влага продуктов сгорания удаляется из котла в виде перегретого пара. В конденсационных котлах эта влага переходит в конденсат, а теплота конденсации полезно используется.
При расчете КПД по низшей теплоте сгорания показатель может составлять больше единицы. В данном случае целесообразно проводить расчеты по высшей теплоте сгорания с учетом теплоты конденсации пара. Но в этом случае характеристики рассматриваемого котла сложно сопоставить с параметрами других установок.
Преимуществом тепловых насосов, как нагревательной техники, является возможность получать больше теплоты, чем расходуется энергии на совершение ими работы. Холодильная машина способна отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса. В качестве показателя эффективности машин применяют холодильный коэффициент:
Q2А = Q2 Q1-Q2
где Q — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность);
A — работа или электрическая энергия, которую тратят в процессе.
В случае тепловых насосов применимо понятие коэффициента трансформации:
η = Q1А= Q1Q1-Q2, где
Q — тепло конденсации, которое передается теплоносителю;
A — затрачиваемая на этот процесс работа (или электроэнергия).
При рассмотрении идеальной машины:
η = Q1-Q2Q1 = T1-T2T1, где
T1 — температура нагревателя,
T2 — температура холодильника.
Таким образом, максимально высокой производительностью отличаются холодильные машины, функционирующие на обратном цикле Карно.
Данная величина не ограничена в значении. К этой характеристике достаточно сложно приблизиться на практике. Допустимо значение холодильного коэффициента больше единицы, что не противоречит первому началу термодинамики, так как, кроме учитываемой энергии A, в тепло Q идет и энергия, отбираемая от холодного источника.
Откуда вообще берется электрический ток?
Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят «Ну, из розетки, ясное дело» или же просто пожмут плечами
А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому
А вот уметь грамотно использовать принцип работы тока под силу не каждому.
Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.
Работа силы тяжести — разность потенциальной энергии
Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.
Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела
Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.
\( E_{p1} \left(\text{Дж} \right) \) – начальная потенциальная энергия яблока;
\( E_{p2} \left(\text{Дж} \right) \) – конечная потенциальная энергия яблока;
Примечание: Работу можно рассчитать через разность потенциальной энергии тела.
Потенциальную энергию будем вычислять, используя формулу:
\
\( m \left( \text{кг}\right) \) – масса яблока;
Величина \( \displaystyle g \approx 10 \left(\frac{\text{м}}{c^{2}} \right) \) – ускорение свободного падения.
\( h \left( \text{м}\right) \) – высота, на которой находится яблоко относительно поверхности земли.
Начальная высота яблока над поверхностью земли равна 3 метрам
\
Потенциальная энергия яблока на столе
\
Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.
\
\
Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!. Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_{p}\) дополнительно допишем знак «минус»
Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_{p}\) дополнительно допишем знак «минус».
\
Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.
Примечания:
- Если тело падает на землю, работа силы тяжести положительна;
- Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
- Сила тяжести относится к . Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
- Работа силы тяжести не зависит от траектории, по которой двигалось тело;
- Работа для силы \(\displaystyle F_{\text{тяж}}\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.
Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_{\text{тяж}}\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.
Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой
Что такое потенциал?
Потенциалом называется энергия, которая затрачивается на передвижение заряженной частицы из первой точки, имеющей нулевой потенциал во вторую точку.
Разность потенциалов меж пунктами А и Б – это работа, производимая силами для передвижения некоего положительного электрона по произвольной траектории из А в Б.
Чем больший потенциал у электрона, чем больше плотность потока на единицу площади. Такое явление подобно гравитации. Чем больше масса, тем больше потенциал, тем интенсивнее и плотнее гравитационное поле на единицу площади.
Небольшой заряд с низким потенциалом, с прореженной плотностью потока показан на следующем рисунке.
А ниже показан заряд с большим потенциалом и плотностью потока.
Например: во время грозы электроны истощаются в одной точке и собираются в другой, образуя электрическое поле. Когда сила станет достаточной, чтобы сломать диэлектрическую проницаемость, получается удар молнии (состоящий из электронов). При выравнивании разности потенциалов электрическое поле разрушается.
Закон Джоуля-Ленца
Явление нагрева проводника было обнаружено французским ученым А. Фуркуа. Произошло это еще в 1880 году. 41 год спустя оно было описано английским физиком Дж. П. Джоулем и через год подтверждено на опыте русским физиком Э.Х. Ленцем. Именно по фамилиям двух последних ученых стали называть обнаруженную закономерность.
В ней связаны две величины: количество теплоты и работа электрического тока. Закон Джоуля-Ленца утверждает, что вся работа в неподвижном проводнике идет на его нагревание. То есть проводник с током выделяет количество теплоты, равное произведению его сопротивления, времени и квадрата силы тока. Формула выглядит так же, как одна из тех, которые приведены для работы:
Q = I2 * R * t.
1.11. Работа и мощность тока
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу
ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt, |
где U = Δφ12 – напряжение. Эту работу называют работой электрического тока. Если обе части формулы
RI = U, |
выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение
R I2 Δt = U I Δt = ΔA. |
Это соотношение выражает закон сохранения энергии для однородного участка цепи.
Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
ΔQ = ΔA = R I2 Δt. |
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.
Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).
Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде
(R + r) I = . |
Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:
R I2Δt + r I2Δt = IΔt = ΔAст. |
Первый член в левой части ΔQ = R I2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = r I2Δt – тепло, выделяющееся внутри источника за то же время.
Выражение IΔt равно работе сторонних сил ΔAст, действующих внутри источника.
При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).
ΔQ + ΔQист = ΔAст = IΔt |
Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника
Роль электрического поля сводится к перераспределению тепла между различными участками цепи.
Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.
Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна
Во внешней цепи выделяется мощность Отношение равное
называется коэффициентом полезного действия источника. На рис. 1.11.1 графически представлены зависимости мощности источника Pист, полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до (при R = 0).
Рисунок 1.11.1. Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока |
Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax, равная
достигается при R = r. При этом ток в цепи а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, т. е. при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.
единица, в чём будет измеряться мощность, электрический заряд и теория определения
Сила тока представляет собой движение заряженных частиц в определённом направлении, во взятом проводнике. Многих физиков в прошлом волновал вопрос: в чём измеряется ток и как измерить то, что невидимо и неосязаемо. Но благодаря ряду открытий ситуация стала проясняться. Для того чтобы появилось движение заряженных частиц, нужно воздействие электрического поля.
В то же время заряженные частицы появляются постоянно, благодаря плотному контакту в любых веществах:
- проводники
- полупроводники
- диэлектрики.
Заряженные частицы способны совершать свободные движения в разных направлениях. Материалы, где свободно перемещаются заряженные частицы, называют проводниками: металл, растворы соли.
Материалы, где электрические частицы не могут перемещаться, называют диэлектриками: газ, кварц, дерево.
Материалы, которые имеют не только электронную, но и «дырочную» проводимость, которая зависит от многих внешних факторов (свет, температура, магнитные и электрические поля) называют полупроводниками: селен, кремний, германий.
Единицы измерения
Ток подразделяют на несколько разновидностей. Основные из них представлены таким образом:
- Постоянный -значение и направление не меняются во времени;
- Синусоидальный — величина меняется по синусоидальному закону;
- Высокочастотный — частота начинается с десятки килогерц;
- Периодический — значения которого повторяются во времени с одинаковой периодичностью;
Пульсирующий — изменяющий периодически значение во времени, отличное от нуля.
Учёные часто задавались вопросом, в каких единицах измеряется сила тока. Для измерения, пользуются физической величиной. Эта физическая величина равна отношению значения заряда Q, протёкшего за какое-то время через поперечное сечение проводника, к значению этого временного периода: I=Q/t. И измеряется в амперах и показывает обозначение силы тока: A.
Электрический ток в чём измеряется, в том и рассчитывается — на принципиальных схемах. Такое определение помогает рассчитать блоки питания определённой мощности.
В электрических цепях показатели рассчитывают по закону Ома, и именно это отвечает на вопрос чему равен ток. Сила I на определённом участке цепи прямо пропорциональна напряжению, подаваемому на него и обратно пропорциональна сопротивлению R участка цепи: I=U/R.
Разные значения
Если на участке цепи переменный ток, напряжение постоянно изменяется, поэтому если взять средние значения напряжения, то они будут равны нулю, а средняя мощность будет нулю не равна. Для этого стали применять такие понятия:
- мгновенные значения;
- амплитудные значение ;
- действующие значения.
Мгновенные значения -это те, которые имеют место в данный момент времени. Амплитудные значения — самые максимальные. Действующие значения определяются тепловым свойством тока, текущего через сечение проводника, а направление векторной величины совпадает с направлениями перемещения положительных частиц.
Для точных измерений нужны основные параметры: напряжение, мощность, сопротивление, частота.
Измерение мощности
Мощностью называют определённое количество работы, которое совершается за одну секунду времени.
Для измерения мощности была принята единица — ватт .
Следовательно, мощностью в 1 Вт называют силу в 1 А при значении напряжения в 1 В.
Для того чтобы вычислить мощность, нужно силу тока умножить на напряжение .
Если мощность обозначается буквой P, то формула примет вид:
P = I*U.
Мощность вычисляется с помощью сопротивления. Часто бывают известны сила тока и сопротивление цепи, а напряжение, обычно, неизвестно.
Следовательно, воспользовавшись законом Ома :
U=IR
получаем формулу: Р = I2*R
Определение частоты
Передвижение электронов в проводнике в одну сторону, а затем в другую принято называть одним колебанием. За одним колебанием следует другое. При таких колебаниях в проводнике происходит соответствующее колебание магнитного поля.
Время, затраченное на одно колебание, называют периодом и обозначают буквой Т. Период обозначают в секундах.
Одной из важных величин является частота. Она показывает число колебаний в секунду и обозначается буквой f. Название единицы частоты — герц, (Гц) .
Практическое применение
Электрический постоянный ток всегда имеет всегда одно направление, которое называют постоянным. Он широко применяется для питания электронных устройств.
Если ток меняет направление, его называют переменным, и он применяется для передачи энергии по проводам на большие расстояния.
Мгновенная электрическая мощность
В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q = U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:
PF1-F2 = U * I.
Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:
P(t) = U(t) * I(t).
Аналогичные выводы делают с учетом соответствующей величины сопротивления:
P (t) = (I (t))2 * R = (U(t))2/ R.