Что такое электродвижущая сила (эдс) и как ее рассчитать

ЭДС

ЭДС расшифровывается как электродвижущая сила или физическое значение, которое характеризует работу посторонних сил в блоках неизменного либо переменного токов.

При закрытом проводном контуре равняется действию работы данных сил при перемещении одиночного заряда с плюсовым значением, по всему контуру.

Обозначая напряжение поля посторонних сил с помощью электродвижущей силы, получается что эдс неизвестна в закрытом контуре L равняется.

Допустимые силы электростатического поля постоянно не смогут держать одно напряжение в цепи, потому что работая по закрытому пути, данные силы равны нулю. А когда ток проходит через проводники, то данную работу сопровождает выделение энергии и нагревание проводников.

Посторонние силы заставляют двигаться заряженные частицы в генераторе, гальванических элементах, аккумуляторах и всевозможных источниках. При чем возникновение посторонних сил различное.

К примеру: В генераторе используются от вихревого электрического поля, которые возникают от изменения магнитного поля; У гальванических элементов и аккумуляторов используются химические силы.

Эдс источника тока зависит от напряжения в местах зажимов если цепь разомкнута. По закону Ома сила тока цепи с заданным сопротивлением также находит эдс. Единица измерения Вольт.

Эдс индукции это своего рода явление которое обусловлено изменением магнитного поля в замкнутом пространстве. Находится по формуле:

в которой: Ф — магнитное поле в закрытом пространстве S, закрытую контуром. При этом знак минус служит для неизменности магнитного поля благодаря индукции электродвижущей силы.

Электродвижущая сила это описание закрытого контура, невозможно точно показать её точку пребывания. Но практически всегда эдс считают приблизительно сосредоточенной в некоторых устройствах либо элементов цепи. При этом её называют описанием данного устройства, определяя как потенциальную разность в его разомкнутых полюсах.

Такие устройства разделяют на несколько видов зависящих от типа преобразования:

— Химические — это аккумуляторы, ванны, гальванические батареи;
— Электромагнитные — это электродвижущая сила электромагнитной индукции, которая бывает в трансформаторах, динамо-машинах, электромоторах, дросселях; — Фотоэлектрические — это внешние или внутренние фотоэффекты;
— Электростатические — это возникающее напряжение в механическом трении электрофорных машин или как пример грозовые облака.
— Пьезоэлектрические — это сдавливание либо растяжение пьезэлектрических датчиков.
Так же существуют термоионные и термоэлектрические эдс.

Закон Фарадея-Максвелла

В 1873 г. Дж. Максвелл переформулировал теорию электромагнитного поля. Выведенные из него уравнения легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ / dt – уравнение электродвижущей силы
  • Hdl = -dN / dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля в зоне dl; H – напряженность магнитного поля в области dl; N – поток электрической индукции, t – время.

Симметричный характер этих уравнений устанавливает связь между электрическими и магнитными явлениями, магнитными с электрическими явлениями, физический смысл, с которым определяются эти уравнения, может быть выражен следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Максвелл также обнаружил, что распространение электромагнитного поля равно скорости распространения света.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Индуктивность

Индуктивность — это способность накапливать магнитное поле. Она характеризует способность проводника сопротивляться электрическому току. Проще всего это делать с помощью катушки, потому что катушка состоит из витков, которые представляют собой контуры. Вспомните про магнитный поток и обруч под дождем — в контуре создается магнитный поток. Где поток, там и электромагнитная индукция.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

Как работает катушка

Вокруг каждого проводника, по которому протекает ток, образуется магнитное поле. Если поместить проводник в переменное поле — в нем возникнет ток.

Магнитные поля каждого витка катушки складываются. Поэтому вокруг катушки, по которой протекает ток, возникает сильное магнитное поле. При изменении силы тока в катушке будет изменяться и магнитный поток вокруг нее.

Задачка раз

На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.

Решение

За время от 15 до 20 с сила тока изменилась от 20 до 0 мА. Модуль ЭДС самоиндукции равен:

Ответ: модуль ЭДС самоиндукции с 15 до 20 секунд равен 4 мкВ.

Задачка два

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб. Электрический ток какой силы должен протекать по катушке для того, чтобы поток вектора магнитной индукции через указанный контур был равен 6 мВб?

Решение

При протекании тока через катушку индуктивности возникает магнитный поток, численно равный Ф = LI.

Отсюда индуктивность катушки равна:

Тогда для достижения значений потока вектора магнитной индукции в 6 мВб ток будет равен:

Ответ: для достижения значений потока вектора магнитной индукции в 6 мВб необходим ток в 3 А.

Закон Фарадея

Явление электромагнитной индукции определяется появлением электрического тока в электрически проводящей замкнутой цепи при изменении магнитного потока через область этой цепи.

Основной закон Фарадея состоит в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, основанная на приведенных выше пояснениях, вопросов не вызывает, то знак «-» может вызвать сомнения. Оказывается, существует правило Ленца, русского ученого, проводившего свои исследования на основе постулатов Фарадея. Согласно Ленцу, знак «-» указывает направление возникающей ЭДС, то есть индукционный ток направлен таким образом, что магнитный поток, который он создает через область, ограниченную цепью, стремится предотвратить изменение потока, которое вызывает такой ток.

Основные понятия и законы электростатики

Закон Кулона:
сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату их расстояния:

Коэффициент пропорциональности в этом законе

В SI коэффициент k записывается как

Потенциал электрического поля – это отношение потенциальной энергии заряда в поле к этому заряду:

Проекция напряженности электрического поля на ось и потенциал связаны соотношением

Электрическая емкость тела называется величиной отношения

Основные понятия и законы постоянного тока

Электрический ток – это прямое движение электрических зарядов. В разных веществах переносчиками заряда выступают элементарные частицы разного знака. Направление движения положительных зарядов считается положительным направлением тока. Электрический ток количественно характеризуется его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи:

R
ρ

При параллельном подключении сопротивление, обратное сопротивлению, равно сумме обратных сопротивлений:

где t – время, I – сила тока, U – разность потенциалов, q – прошедший заряд.
Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, необходимо определить как направление этого вектора, так и его величину. Направление вектора магнитной индукции связано с ориентационным действием магнитного поля на магнитную стрелку. Направление вектора магнитной индукции берется от южного полюса S к северному полюсу N магнитной стрелки, которая свободно установлена ​​в магнитном поле.
Направление вектора магнитной индукции прямого проводника с токами можно определить с помощью правила подвеса:
если направление поступательного перемещения кардана совпадает с направлением тока в проводнике, то направление вращения ручки карданного подвеса совпадает с направлением вектора магнитной индукции.
Величина вектора магнитной индукции – это отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка:

Основные понятия и законы электромагнитной индукции

Если через замкнутую проводящую цепь проникает переменный магнитный поток, в этой цепи возникают ЭДС и электрический ток. Эта ЭДС называется ЭДС электромагнитной индукции, а ток – индукцией. Явление их возникновения называется электромагнитной индукцией. ЭДС индукции можно рассчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательный контур – это электрическая цепь, состоящая из последовательно включенных конденсатора с емкостью C и катушки с индуктивностью L (см. Рис. 7).

Для незатухающих свободных колебаний в контуре циклическая частота определяется по формуле

Период свободных колебаний в контуре определяется формулой Томсона:

Ток, протекающий через катушку индуктивности, не совпадает по фазе с напряжением на 1/2 или четверть периода. Напряжение опережает ток на тот же фазовый угол.

Трансформатор – это устройство, предназначенное для преобразования переменного тока. Трансформатор состоит из замкнутого стального сердечника, на котором установлены две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке к вторичной обмотке трансформатора равно отношению количества витков в этих обмотках:

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Основные понятия и законы электростатики

Закон Кулона:сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности в этом законе

В СИ коэффициент k записывается в виде

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:

 Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением

Электроёмкостью тела называют величину отношения

Основные понятия и законы постоянного тока

Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

 При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

 Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции. Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:

Основные понятия и законы электромагнитной индукции

 Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).

 Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой

 Период свободных колебаний в контуре определяется формулой Томсона:

 Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:

Закон электромагнитной индукции Фарадея

Формула магнитного потока

Отрицательное значение ЭДС – это обозначение противоположного знака по отношению к изменению Ф. Если скажут «запишите формулу закона электромагнитной индукции», следует не забывать о динамической природе рассматриваемого явления. Ниже приведены примеры для вычисления основных электрических параметров:

  • ЭДС одиночного контура E1 = – (ΔФ/Δt), где Δt – временной интервал;
  • при создании конструкции из N витков EN = – N*(ΔФ/Δt);
  • ток в проводнике (замкнутый контур с электрическим сопротивлением R) I = E/R;
  • движущийся со скоростью v проводник длиной D создает ЭДС E = В * D * v * sin α.

Приложения

Принципы электромагнитной индукции применяются во многих устройствах и системах, в том числе:

  • Токовые клещи
  • Электрические генераторы
  • Электромагнитное формование
  • Графический планшет
  • эффект Холла метры
  • Индукционная готовка
  • Асинхронные двигатели
  • Индукционное уплотнение
  • Индукционная сварка
  • Индуктивная зарядка
  • Индукторы
  • Магнитные расходомеры
  • Фонарик с механическим приводом
  • Пикапы
  • Кольцо Rowland
  • Транскраниальная магнитная стимуляция
  • Трансформеры
  • Беспроводная передача энергии

Электрический генератор

Прямоугольная проволочная петля, вращающаяся с угловой скоростью ω в направленном радиально наружу магнитном поле B фиксированной величины. Цепь замыкается щетками, скользящими по контактам с верхним и нижним дисками, имеющими токопроводящие обода. Это упрощенная версия барабанный генератор.

ЭДС, создаваемая законом индукции Фарадея из-за относительного движения цепи и магнитного поля, является явлением, лежащим в основе электрические генераторы. Когда постоянный магнит перемещается относительно проводника, или наоборот, создается электродвижущая сила. Если провод подключен через электрическая нагрузка, ток будет течь, и, следовательно, электроэнергия генерируется, преобразуя механическую энергию движения в электрическую. Например, барабанный генератор основан на рисунке справа внизу. Другая реализация этой идеи — это Диск Фарадея, показанный в упрощенном виде справа.

В примере с диском Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, заставляя ток течь в радиальном плече из-за силы Лоренца. Чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течет через проводящий обод, магнитное поле создается этим током через Обходной закон Ампера (помечено на рисунке как «индуцированный B»). Обод, таким образом, становится электромагнит который сопротивляется вращению диска (пример Закон Ленца). На дальней стороне рисунка обратный ток течет от вращающегося рычага через дальнюю сторону обода к нижней щетке. B-поле, индуцированное этим обратным током, противостоит приложенному B-полю, стремясь к уменьшение поток через ту сторону цепи, противодействующий увеличение в потоке из-за вращения. На ближней стороне рисунка обратный ток течет от вращающегося рычага через ближнюю сторону обода к нижней щетке. Индуцированное B-поле увеличивается поток на этой стороне цепи, противодействующий уменьшение в потоке из-за вращения. Энергия, необходимая для поддержания движения диска, несмотря на эту реактивную силу, в точности равна произведенной электрической энергии (плюс энергия, потраченная впустую из-за трение, Джоулевое нагревание, и другие недостатки). Такое поведение характерно для всех генераторов, преобразующих механическая энергия к электрической энергии.

Электрический трансформатор

Когда электрический ток в петле из проволоки изменяется, изменяющийся ток создает изменяющееся магнитное поле. Второй провод, находящийся в зоне действия этого магнитного поля, будет испытывать это изменение магнитного поля как изменение связанного магнитного потока, d ΦB / д т. Следовательно, электродвижущая сила создается во втором контуре, называемом наведенной ЭДС или ЭДС трансформатора. Если два конца этого контура соединить через электрическую нагрузку, ток будет течь.

Токовые клещи

Токовые клещи

Токовые клещи — это тип трансформатора с разъемным сердечником, который можно раздвинуть и закрепить на проводе или катушке для измерения тока в нем или, наоборот, для создания напряжения. В отличие от обычных инструментов, зажим не имеет электрического контакта с проводником и не требует его отключения во время крепления зажима.

Магнитный расходомер

Закон Фарадея используется для измерения расхода электропроводных жидкостей и шламов. Такие приборы называются магнитными расходомерами. Индуцированное напряжение ℇ, создаваемое в магнитном поле B из-за проводящей жидкости, движущейся со скоростью v таким образом дается:

E=−Bℓv,{ displaystyle { mathcal {E}} = — B ell v,}

где ℓ — расстояние между электродами в магнитном расходомере.

Магнитный поток

Магнитным потоком через площадь ​\( S \)​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​\( B \)​, площади поверхности ​\( S \)​, пронизываемой данным потоком, и косинуса угла ​\( \alpha \)​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​\( \Phi \)​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​\( \alpha \)​ магнитный поток может быть положительным (\( \alpha \) < 90°) или отрицательным (\( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электродвигатель

Электрогенератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, что через токопроводящее радиальное плечо протекает постоянный ток от определенного напряжения. Таким образом, согласно закону силы Лоренца, на этот движущийся заряд действует сила в магнитном поле B, которая заставляет диск вращаться в направлении, определяемом правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или джоулева тепло, диск будет вращаться с такой скоростью, что d ΦB / dt равно напряжению, вызывающему ток.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Паразитная индукция и тепловые потери

Рассмотренные явления могут применяться с пользой для разогрева кухонной посуды или плавки различных материалов. Однако в трансформаторах и электродвигателях паразитные вихревые индукционные токи – это негативное явление. Кроме прямых энергетических потерь, увеличивается вероятность аварийных ситуаций. При слишком высокой температуре повреждается изоляция.

Расслоение электромагнита

Уменьшают негативные проявления с помощью особых «наборных» конструкций. Если объединить несколько пластин, обеспечивается взаимная компенсация полей.


Принцип конструкции из нескольких слоев

При правильном расчете потери уменьшают (2) до 1-2% от уровня, который создает цельный аналог (1).

Паразитные потери в катушках индуктивности

Размеры проводника также имеют значение. Крупные элементы образуют паразитные токи, так как в определенном положении распределение линий магнитного поля неравномерно.


Пояснение к появлению в катушке паразитных токов

На рисунке схематично показаны различные силовые характеристики поля для участков по линиям a-b и c-d, соответственно. При уменьшении размеров проводника снижаются энергетические потери. В некоторых устройствах этот параметр определят класс энергетической эффективности.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: