переменный и постоянный ток — это НЕ сложно
Постоянный и переменный ток
В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.
Постоянный ток
Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока — это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.
Переменный ток
(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~». Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление – это область графика ниже нуля.
Теперь давай разберемся, что такое частота. Частота это — период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.
Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.
Преобразование переменного тока в постоянный
Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”. Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.
что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.
Требования к оборудованию
Для обеспечения безопасности и надежности срабатывания, подобные устройства обязательно сертифицируются. Требования государственного стандарта занимают не меньше страницы текста, выделим основные из них:
- изоляционная оболочка прибора должна выдерживать напряжение, превышающее диапазон измерения;
- однополюсный указатель изготавливается только в одном корпусе, при этом исключается необходимость работы двумя руками;
- на одном конце указателя имеется щуп для контакта с проверяемым участком цепи, на противоположном — контактная площадка для касания пальцем оператора;
- двухполюсный указатель напряжения должен состоять их двух корпусов с одинаковыми показателями защищенности, соединенными гибким изолированным кабелем длиной 1 метр;
- открытый участок щупа не должен превышать длину, установленную для выбранного диапазона измерения;
- световой и (или) звуковой индикатор наличия потенциала должен быть отчетливо различим в любых условиях измерения.
Стандарты безопасности единые для всей территории Российской Федерации. Никакой субъект, будь то Москва или любой областной центр не вправе смягчать требования к производству или применению подобного оборудования.
Рассмотрим работу основных типов указателей напряжения.
Откуда берется напряжение
Чтобы подать электричество в розетку, необходимо его как-то сгенерировать. Для выработки электроэнергии до сих пор в большинстве применяются технологии конца 19 века – электромагнитная индукция, преобразующая механическую энергию в электрическую. Проще говоря – генераторы. Различие генераторов лишь в том, каким образом подают механическую энергию. Раньше это были громоздкие паровые машины. Со временем добавились гидротурбины для проточной воды (гидроэлектростанции) , двигатели внутреннего сгорания, ядерные реакторы.
Принцип действия генератора основан на магнитной индукции. Вращательное движение генератора превращается в электрический ток. То есть можно сказать, что генератор — это тот же самый электродвигатель, но обратного действия. Если на электродвигатель подать напряжение, то он начнет вращаться. Генератор работает наоборот. Вращательное движение вала генератора превращается в электрический ток. Поэтому, чтобы вращать вал генератора, нам потребуется какая-либо энергия извне. Это может быть пар, который раскручивает турбину, а она в свою очередь раскручивает вал генератора
Принцип работы ТЭС
либо это может быть сила потока воды, которая с помощью гидротурбины раскручивает вал генератора, а он в свою очередь также вырабатывает электрический ток
Принцип работы ГЭС
Ну или это может быть даже ветряк
Ветряная электростанция
Короче говоря, принцип везде один и тот же.
Кстати, ядерный реактор не способен самостоятельно выработать энергию. По сути, атомная энергоустановка является тем же самым примитивным паровым котлом, где рабочим телом является обыкновенный пар. Да, нынче существуют иные способы генерации электричества, на вроде тех же самых солнечных элементов, бетагальванических и изотопных ядерных батарей, «мифических» токомаков. Однако, вышеперечисленный «хайтэк» имеет существенные ограничения – запредельная стоимость материалов ,монтажа и наладки, габариты и малый кпд. Потому, всерьёз рассматривать всё это в качестве полноценной электростанции большой мощности не стоит (по крайней мере в ближайшие пару десятков лет).
Примеры косвенных прикосновений
Приведем несколько примеров рассматриваемого прикосновения, встречающихся в быту и на производстве. Допустим, у электрочайника с металлическим корпусом произошло повреждение изоляции нагревательного элемента. В результате на корпусе образуется опасное напряжение прикосновения. Если взять такой чайник в руку, ничего не произойдет, поскольку в данном случае мы будем иметь дело с однополюсным прикосновением.
Ситуация резко изменится, если второй рукой коснуться смесителя, в этом случае образуется электрическая цепь, проходящая через тело человека (двухполюсное прикосновение). Это будет равносильно прямому контакту с нулем и фазой. Описанная угроза может исходить от многих бытовых приборов, например, пылесоса, накопительного водонагревателя (бойлера), стиральной машины и т.д.
Примеры косвенного прикосновения в быту
Характерный пример на производстве – пробой изоляции фазного провода и его контакт с корпусом электроустановки. При одновременном прикосновении к металлической оболочке оборудования (где произошел пробой) и открытой, проводящей ток замыкания, конструкции с нулевым потенциалом, человек будет поражен электротоком. При нарушении изоляции нуля или защитного провода, максимум, что может произойти – однофазное замыкание, что приводит к отключению АВ.
ПОЧЕМУ СЛЕДУЕТ ИСПОЛЬЗОВАТЬ ИСПЫТАНИЯ СНЧ
Метод испытания напряжением СНЧ был введён в практику с 1986 г.; основной причиной этого явилась необходимость разработки новых методов испытаний для кабелей с полимерной изоляцией и огромное количество проблем, связанных с эффектами водных триингов (водный триинг или дендрит — образование разветвлённой микроструктуры в виде объёмной сетки или микрокустов в теле диэлектрика) в кабелях с изоляцией из сшитого полиэтилена первого поколения (рис. 1). Целый ряд исследователей продемонстрировали, что традиционно использовавшийся метод испытания постоянным напряжением применительно к кабелям с полимерной изоляцией приводит к образованию в полимерном материале объёмных зарядов. Подобные объёмные заряды могут сохраняться внутри аморфных областей полимерного материала до 24 часов. Если на кабель будет возобновлена подача энергии до того, как все объёмные заряды исчезнут, то возникнет локальное перенапряжение, которое может привести к электрическому триингу, и в результате вскоре после ввода кабеля в эксплуатацию произойдёт его пробой.
Рис. 1. Водный триинг критической длины может эффективно выявляться с помощью метода испытания СНЧ
Именно по этой причине в большинстве стран метод испытания постоянным напряжением запрещён к применению для кабелей с полиэтиленовой/сшитой полиэтиленовой изоляцией, а также из-за ряда других недостатков, присущих данному методу, таким, как описано в источнике :
- нечувствительности к целому ряду дефектов, например, к чистым полостям или надрезам;
- невозможности воспроизвести существующее распределение нагрузки при переменном сетевом напряжении. Распределение нагрузки чувствительно к температуре и температурному распределению.
Кроме того, использование метода СНЧ имеет ряд дополнительных преимуществ по сравнению с методами испытания переменным напряжением с частотой 50 Гц или резонансной:
- меньший вес испытательного оборудования;
- большая допустимая ёмкость испытываемого кабеля;
- меньше повреждений исправной изоляции.
На рис. 2 показан график зависимости напряжения пробоя от частоты испытательного напряжения для кабелей с изоляцией из сшитого полиэтилена при наличии и отсутствии механических повреждений. Из графика чётко видно, что величина напряжения пробоя для кабеля без механических повреждений имеет максимальное значение на частоте 0,1 Гц, т.е. проведение испытания методом СНЧ на кабеле с целостной изоляцией не приводит к повреждениям/старению изоляции, в то время как испытания на рабочей частоте или более высокой имеют существенно меньшее напряжение пробоя. Это означает, что напряжение с частотой 50 Гц существенно сильнее воздействует на изоляцию, чем напряжение СНЧ на частоте 0,1 Гц.
Рис. 2. Напряжение пробоя как функция частоты напряжения для модели кабеля
с изоляцией из сшитого полиэтилена без и с механическими дефектами
С другой стороны, эффективность поиска повреждений или водных триингов выше всего на частоте 0,1 Гц (рис. 3) . Третий и четвёртый столбцы соответствуют механическому повреждению внутри кабеля и водному триингу. Как следует из рис. 3, напряжение пробоя для этих дефектов имеет наименьшую величину на частоте 0,1 Гц и, таким образом, метод СНЧ лучше всего подходит для идентификации дефектов в изоляции кабеля.
Рис. 3. Относительное напряжение пробоя на объектах формы от прутка до пластины
и для кабеля с дефектами и без них для нескольких напряжений различной формы
Параметры напряжения
Перед тем, как вы скажите, что напряжение в вашей сети не соответствует норме и заявите свою претензию в энергоснабжающую организацию, необходимо знать эту норму. Диапазон отклонения напряжения устанавливается в нормальном режиме: δUyнор= ± 5 %, в предельно допустимом: δUyпред= ± 10 % от номинального значения.
В России номинальное напряжение бытовой сети Uном = 230 Вольт (В), верхний диапазон составляет 242 В. Для Uном = 380 В, верхний диапазон равен 418 В. Если напряжение выше этих диапазонов и по этой причине вышли из строя электробытовые приборы, вы вправе пожаловаться в энергоснабжающую организацию.
ПЕРСПЕКТИВЫ
В настоящее время испытания напряжением СНЧ очень часто комбинируются с диагностикой ЧР. Так, например, в Нидерландах в энергосистемах общего назначения после прокладки кабелей используются следующие процедуры :
- контроль оболочки;
- проверка прочности кабеля с использованием СНЧ-испытаний на частоте 0,1 Гц при напряжении 3Uo;
- диагностика ЧР с применением затухающего переменного напряжения (DAC).
Преимущество комбинации методов контроля, а именно диагностики ЧР, проводимой сразу после СНЧ-испытаний, заключается в том, что можно обнаружить существенные дефекты проведённых монтажных работ, которые не были выявлены с помощью СНЧ-испытаний, и своевременно устранить их. Это позволяет дополнительно повысить надёжность сетей электроснабжения и снизить затраты на внеплановые отключения электроснабжения, на недопоставленную энергию (например, когда отключают ветроустановки) или оплату штрафов.
К существенным дефектам проведённых работ могут быть отнесены, например, неполная усадка термоусаживаемых соединений, неправильное удаление внешнего полупроводящего слоя или наличие грязи внутри соединений. Подобные недоделки пройдут незамеченными в процессе испытаний СНЧ, но будут выявлены при диагностике ЧР (рис. 9). Если подобные недоделки в работе не будут своевременно устранены, то в ближайшие годы эксплуатации можно ожидать непредвиденных пробоев таких муфт (в зависимости от типа дефекта).
Рис. 9. Повреждения изоляции из-за нарушения технологии монтажа муфт
а) неправильная зачистка изоляции, выявленная с помощью диагностики ЧР, позволившая предотвратить пробой;
б) следы ЧР на оболочке кабеля.
Обычно после успешного проведения испытания и прокладки кабеля следующие испытания и диагностика проводятся через 10-15 лет. Другими словами, в указанный период времени не ожидается возникновение каких-либо проблем, если только последние не будут вызваны внешними воздействиями.
Оставить заявку
В случае, если Вы хотите, чтобы мы выполнили работу:
Выберите из списка инересующий вас вид работАудит промышленной безопасностиИдентификация и классификация ОПО, получение лицензии на эксплуатацию ОПОРазработка ПЛА, планов мероприятий, документации, связанной с готовностью предприятий к ГОЧС и пожарной безопасностиОбследование и экспертиза промышленной безопасности зданий и сооруженийРаботы на подъемных сооруженияхРаботы на объектах котлонадзора и энергетического оборудованияРаботы на объектах газового надзораРаботы на объектах химии и нефтехимииРаботы на объектах, связанных с транспортированием опасных веществРаботы на производствах по хранению и переработке растительного сырьяРаботы на металлургических литейных производствахРаботы на горнорудных производствахОценка соответствия лифтов, техническое освидетельствование лифтовРазработка обоснования безопасности опасного производственного объектаРазработка документации системы управления промышленной безопасностьюРазработка деклараций промышленной безопасностиРаботы на объектах Минобороны (ОПО воинских частей) и объектах ФСИН России (ОПО исправительных учреждений)ПроектированиеРемонтно-монтажные работыЭлектроремонтные и электроизмерительные работыРазработка и производство приборов безопасности для промышленных объектовНегосударственная экспертиза проектной документации (инженерных изысканий)Профессиональное обучение (рабочие профессии)Обучение по охране труда, пожарной безопасности и электробезопасности, теплоэнергетикеСпециальная оценка условий труда (СОУТ) и оценка профессиональных рисковАккредитация и аттестация в системе экспертизы промышленной безопасностиСертификация оборудования, декларирование соответствияРазработка схем теплоснабжения и водоснабженияДругие работыПовышение квалификации, профессиональная переподготовкаОсвидетельствование стеллажейперсональных данных
Величина допустимого падения напряжения: ПУЭ
Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.
Нормальное падение работы напряжения в сети:
- В так называемых воздушных линиях – до 8%;
- В кабельных линиях электроснабжения – до 6%;
- В сетях на 220 В – 380 В – в районе 4-6%.
При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.
Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.
Понятия «фактический уровень напряжения» и «фактическое напряжение» — это разные понятия
Для определения величины тарифа на передачу электроэнергии важно установить на каком «фактическом уровне напряжения» подключён потребитель электроэнергии. Не на каком «фактическом напряжении. », а на каком «фактическом УРОВНЕ напряжения »
Это не одно и тоже
», а на каком «фактическом УРОВНЕ напряжения ». Это не одно и тоже.
Эти понятия становятся, практически тождественными при ситуации, когда граница балансовой принадлежности потребителя находится НЕ на ИСТОЧНИКЕ ПИТАНИЯ.
В этом случае за «напряжение
», относящееся к соответствующему «уровню напряжения », принимают «фактическое напряжение » ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.
То есть «фактическое напряжение» ЭПУ совпадает с «напряжением», которое относится к тому или иному «уровню напряжению». «Фактическое напряжение
» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО ПРЕДОПРЕДЕЛЯЕТ «фактический УРОВЕНЬ напряжения», используемый для выбора величины тарифа на передачу электроэнергии.
Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится НЕ на источнике питания, то напряжение, относящееся к соответствующему «уровню напряжения
», будет тоже 6 кВ. Поэтому, «уровень напряжения» будет «средним вторым» (СН2), так как напряжение ЭПУ полностью совпадает с напряжением, относящимся ко второму «уровню напряжения» (СН2). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: напряжения ЭПУ и напряжения, относящегося к соответствующему «уровню напряжения ».
Далее, исходя из «фактического уровня напряжения», по тарифному меню ТСО, определяем величину тарифа на передачу электроэнергии, соответствующую уровню напряжения — среднее второе напряжение (СН2).
Совсем иная ситуация, когда граница балансовой принадлежности потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ.
Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении ЭПУ потребителя к объектам электросетевого хозяйства ТСО
Описанная выше логика, нам нужна, чтобы решить всего одну следующую задачу:
Идентифицировать величину тарифа на передачу электроэнергии, для дальнейшего его применения в расчётах между ТСО и потребителем услуг по передаче электроэнергии в рамках договора энергоснабжения с энергосбытовой организацией (далее по тексту – ЭСО) или в рамках прямого договора оказания услуг по передаче электроэнергии с ТСО.
Целевой результат выполнения данной задачи: Правильно идентифицированная величина тарифа на передачу электроэнергии.
Решается эта задача по следующему алгоритму:
Приведённый выше алгоритм касается только той ситуации, когда энергопринимающие устройства потребителя непосредственно подключены к объектам электросетевого хозяйства ТСО, и к ним применяются:
1. для ситуации когда «ГБП на источнике питания» положения абзаца 3 пункта 15(2) ПНД: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств … потребителя … установлена на объектах…, на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов …»
2. для ситуации когда «ГБП НЕ на источнике питания» положения части первой абзаца 5 пункта 15(2) ПНД, которые звучат так: «в иных случаях принимается уровень напряжения, на котором подключены энергопринимающие устройства и (или) иные объекты электроэнергетики потребителя электрической энергии (мощности)»
Посадка напряжения в домашней сети
Так называемая посадка напряжения может быть чревато многими нежелательными последствиями. Причем нежелательными как самими жителями, так и организацией-поставщиком, ведь именно она будет восполнять все непредвиденные расходы. По объективным причинам, описанным ранее, посадка электроэнергии может достигать рекордных показателей.
При проблемах с напряжением в домашней сети следует вызвать электрика
При отсутствии желания исправлять неисправности это является основанием для подачи искового заявления в суд.
Чем чревато превышение или значительное снижение установленных норм поставки напряжения в доме:
- Быстрее перегорают лампочки;
- Особенно это пагубно для холодильника, стиральной машинки и прочих электробытовых приборов, требующих мощное и постоянное напряжение;
- Срок службы любой электротехнической техники, в том числе микроволновки, тостера, телевизора, компьютеров и так далее.
Таким образом становится очевидно, что все классы электротехники страдают от сильных перепадов напряжения. Особенно это влияние деструктивно сказывается, если в сети именно низкое напряжение. И обязанность обеспечить бесперебойным, стабильным и качественным током принадлежит именно организации, которая занимается поставкой и согласно договору, должна обеспечивать ее качественное обслуживание.
Стандартные параметры электрической сети
Нормы общепринятых стандартов регламентируют также основные параметры, присущие для электроэнергии, поставляемой в дома. С учетом того, что технический ГОСТ – это десятки и десятки страниц сложной терминологии и расчетов, здесь будут приведены общая оценка приводимых категорий. Как общепринято считать, основными параметрами, определяющими нашу бытовую электроэнергию, считаются частота и сила переменного тока и напряжение. Однако есть и ряд других, которые стоит учитывать.
Стандартные параметры электрической сети включают в себя:
- Коэффициент временного напряжения;
- Импульсное напряжение;
- Отклонение частоты напряжения на кабеле электросети;
- Диапазон изменения напряжения;
- Длительность потери напряжения и прочие.
Все перечисленные показатели так или иначе оказывают влияние на потерю или превышение установленных норм подачи энергии в сети.
Обязательное регулирование напряжения в электрических сетях
Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.
Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:
- Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
- Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
- Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
- Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.
Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.
Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.
Среднее значение напряжения
Среднее значение переменного напряжения Uср — это, грубо говоря, площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму.
среднее значение напряжения за период
Например,чему равняется среднее значение напряжения за эти два полупериода? В данном случае ноль вольт. Почему так? Площади S1 и S2 равны. Но все дело в том, что площадь S2 берется со знаком «минус». А так как площади равны, то в сумме они дают ноль: S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее значение напряжения также равняется нулю.
То же самое касается и других сигналов, например, двухполярного меандра. Меандр — это прямоугольный сигнал, у которого длительности паузы и импульса равны. В этом случае его среднее напряжение также будет равняться нулю.
меандр
Меры защиты от поражения электрическим током
В соответствии с Правилами устройства электроустановок для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения
- основная изоляция токоведущих частей;
- ограждения и оболочки;
- установка барьеров;
- размещение вне зоны досягаемости;
- применение сверхнизкого (малого) напряжения.
Для дополнительной защиты от прямого прикосновения в электроустановках до 1 кВ, следует применять устройства защитного отключения (УЗО)
Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В
переменного или60 В постоянного тока в помещениях без повышенной опасности и6 В переменного тока и15 В постоянного тока – во всех случаях.
Для защиты от поражения электрическим током в случае повреждения изоляции (в аварийном режиме) должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении
- защитное заземление;
- автоматическое отключение питания;
- уравнивание потенциалов;
- выравнивание потенциалов;
- двойная или усиленная изоляция
- сверхнизкое (малое) напряжение;
- защитное электрическое разделение цепей;
- изолирующие (непроводящие) помещения, зоны, площадки.
Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50В
переменного тока и120 В постоянного тока.
В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях. (Например, при напряжении более 25В переменного и 60В постоянного тока в помещениях без повышенной опасности, и более 6В переменного и 15В постоянного тока – в помещениях с повышенной опасностью и особо опасных).
Перечисленные меры защиты не являются универсальными. Их эффективность зависит от уровня напряжения, рода электрического тока (постоянный или переменный), типа электроустановки и режимов ее работы (режима заземления нейтрали), а также от условий эксплуатации (от степени опасности помещений)
Поэтому классификация защитных мер является важной предпосылкой для рационального их использования
Безопасность обслуживающего электроустановки персонала и посторонних лиц должна обеспечиваться выполнением не только мер защиты, предусмотренных ПУЭ, а также выполнением следующих мероприятий:
- соблюдением соответствующих расстояний до токоведущих частей или путем закрытия, ограждения токоведущих частей;
- применением блокировок аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям;
- применением предупреждающей сигнализации, надписей и плакатов;
- применением устройств для снижения напряженности электрических и магнитных полей до допустимых значений;
- использованием средств защиты и приспособлений, в том числе для защиты от воздействия электрического и магнитных полей в электроустановках, в которых их напряженность превышает допустимые нормы.
Информация с сайта: https://ohrana-bgd.ru/