Кодовая и цветовая маркировка конденсаторов

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

1. Кодировка 3-мя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

2. Кодировка 4-мя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

3. Маркировка ёмкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Маркировка SMD конденсаторов

Маркировка SMD конденсатора

Первая и вторая цифры обозначают ёмкость, а третья — множитель. Для примера конденсатор на рисунке 100000000 пФ или 100 мкФ с напряжением 16 вольт.

Есть система маркировки из двух символов. Первая буква — числовое значение, вторая — множитель (степень десяти). Общее значение даёт ёмкость в пФ:

Буква A B C D E F G H J K a L
Значение 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 25 2.7
Буква M N b P Q d R e S f T U
Значение 3.0 3.3 3.5 3.6 3.9 4.0 4.3 4.5 4.7 5.0 5.1 5.6
Буква m V W n X t Y y Z
Значение 6.0 6.2 6.8 7.0 7.5 8.0 8.2 9.0 9.1
Цифра 1 2 3 4 5 6 7 8 9
Множитель 100 101 102 103 104 105 106 107 108 10-1

К примеру, J5 = 2,2x 105 = 220000 пФ = 0.22 мкФ, или M9 = 3.3 x 10-1 = 0.33 пФ

Танталовые конденсаторы первым символом часто указывается напряжение:

Напряжение (вольт) 4 6.3 10 16 20 25 35 50
Код G J A C D E V H

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Для конденсаторов таких , «Hitachi» и др. маркировка осуществляется 3-мя основными способами:

Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

При такой маркировки код содержит 2 или 3 символа по ним можно узнать номинальную емкость и рабочее напряжение. Буквы означают напряжение и емкость, цифра показываем множитель. Если маркировка содержит 2 символа, то рабочее напряжение не указывается. Соответствие кода маркировки и значение емкости можно посмотреть в таблице ниже:

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей.

Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Про CBB конденсаторы 400V 684

Обзор для сторонников светодиодного освещения. Я «обозрял» много лампочек небольшой мощности. В раздумье меня ввели лампочки из самого первого обзора. Стали выходить из строя у напарника. Вот и решил перестраховаться. Заказал конденсаторы на 0,68мкФ. Буду уменьшать ёмкость балласта. Кому интересно, смотрим, что получилось. Посмотрим по традиции, как всё добралось. Посылка добралась в идеальном состоянии за 25 дней. В пакете оказалось 55 конденсаторов. Продавец добавил 10% «на бой». Как видим, ничего не разбилось. А вот дополнительный плюс поставил. Вступительная часть закончена, перейдём непосредственно к обзору. Мощность светодиодных лампочек с драйвером на конденсаторе зависит от напряжения в сети. А у меня в розетке 235В, а не 220В. Получается, что мощность завышена на 8-10% от номинала. Если учесть, что подобные лампочки итак перегружены (из-за маленькой площади охлаждения), выход из строя неизбежен. Когда перегорят? Вопрос времени. За всё время использования светодиодных лампочек, ещё ни одна не сгорела. Но ждать неприятного момента не стал. Решил уменьшить мощность. Тем более в люстре свет от них не совсем основной. В восьмирожковой люстре стоит 7 светодиодных лампочек и одна энергосберегайка. То, что буду делать с лампочками, не все воспримут с одобрением. Я предлагаю тот вариант решения проблемы, который устроил прежде всего меня. Предупрежу сразу, лампочки используются мною по полной, от них отказываться не собираюсь потому, что всё устраивает. А что не устраивает – исправлю. Альтернативы не вижу (каждый по своему с ума сходит).


Вот эти лампочки и буду «пилить».


Во всех лампочках стоит конденсатор 0,82мкФ, его и буду менять. Мощность светодиодов в этих лампочках прямо пропорционально зависит от ёмкости балласта. Не единожды поднимал эту тему, повторяться не буду. При такой замене нагрузка на светодиоды упадёт на 20% (пропорционально изменению ёмкости).


Вот с этой лампочки всё и началось. Стоит в туалете. Посмотрим на фото до реконструкции.


При напряжении в сети 232В потребляет почти 2,7Вт.


После замены мощность упала приблизительно на 0,4Вт. Возьмём следующую.


Эти стоят в люстре (7шт. в одной и 5шт. в другой). Работают с февраля при очень интенсивной нагрузке. Если до сих пор не сгорели, то после переделки я им такого шанса не предоставлю. Больше комментировать не буду, всё поймёте сами.


Эти стоят в люстре у матери (4шт.)


Эти стоят у матери в коридоре, в туалете и ванной комнате.

Маркировка конденсаторов тремя цифрами

При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.

Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Маркировка конденсаторов

Конденсаторы цифровой, буквенно-цифровой и цветовой маркировкой. Цифровая маркировка используется на деталях малого размера. Это СМД тип, плёночные и полимерные. Три или четыре цифры указывают ёмкость. Если нужна иная информация, искать надо в справочниках или даташитах.

Маркировка конденсаторов не стандартизована

На корпусах побольше могут быть указаны и другие важные параметры. Но их расположение и способ маркировки не стандартизирован. Например, в первой строчке может быть указан номинал. А может — отклонение или логотип/название фирмы. В первой строчке может стоять и номинальное напряжение и температурный коэффициент. Так что надо смотреть не только на цифры, но ещё и на единицы измерения.

Параметры могут быть указаны в любом порядке

Какие параметры могут быть указаны в маркировке

Для конденсаторов важны три параметра:

  • ёмкость;
  • номинальное (рабочее) напряжение;
  • допуск по отклонению ёмкости.

С первыми двумя всё ясно. Вот только стоит заметить, что на некоторых конденсаторах номинальное напряжение может быть не указано. Если предполагается высокое напряжение, надо смотреть в данных производителя.

Немного о параметрах

Про два последних параметра (мощность и допуск) стоит сказать пару слов. Допуск в характеристиках конденсаторов — это допустимое/возможное отклонение ёмкости от указанного номинала. Есть виды с малым допуском — в несколько процентов, есть с больши́м — до 20%. Заменить конденсатор с малым допуском на аналог по ёмкости и напряжению, но более высоким допуском можно далеко не всегда. Такое допустимо только в бытовой технике. И то, только там, где величина заряда не слишком критична. Но лучше искать замену с аналогичным допуском.

Кодировка допустимого отклонения емкости Допуск %
E 0.005
L 0.01
P 0.002
W 0.005
B 0.1
C 0.25
D 0.5
F 1
G 2
H 2.5
J 5
K 10
M 20
N 30
Q -10 … +30
T -10…+50
S -20…+50
Z -20…+80

Часто бывает так, что периодически «вылетает» конденсатор на одном и том же месте. По нашей логике хочется заменить его на элемент с больши́м напряжением. Но здесь может быть 2 варианта. Во-первых: в цепи имеют место скачки напряжения превышающие номинальное напряжение детали. Во-вторых, не учтена реактивная мощность конденсатора, если он работает в высокочастотных цепях.

По большей части параметр мощности не указывают и найти его можно в спецификации на деталь. Им обычно пользуются узкие специалисты.

Ещё может быть указан температурный коэффициент — ТКЕ, но он ставится далеко не во всех случаях. Он отображает изменение ёмкости в зависимости от температуры элемента. Обычно проставляется, если есть значительная зависимость. Если изменения незначительны, их просто опускают. Многие параметры легко узнавать имея тестер радиоэлементов.

Цветовая маркировка конденсаторов

Ещё один способ маркировки конденсаторов — нанесение цветных полос или точек. В данном случае имеет значение не только цвет, но и положение полосы или точки по отношению к другим. Так как нужно не ошибиться с началом иначе расшифровка будет не точная, а это чревато.

Расшифровка цветовой маркировки конденсаторов

По положению полоски/точки обозначают следующее:

  • первые три — это ёмкость, но без указания размерности;
  • четвёртая — множитель (показатель отрицательной степени);
  • пятая — допуск;
  • шестая и седьмая — температурный коэффициент.

Первые четыре полоски должны быть всегда. Если дальше какая-то (или всё) отсутствует, это значит, что либо параметр не нормирован, либо просто не указан. Если надо знать точно, придётся искать точные данные.

Золото в разъёмах

В одном килограмме этих деталей обычно содержится до 25 г чистого золота. Китайские и американские разъёмы — это более бедные источники, в которых драгоценных металлов в пять раз меньше. Из элементов легко извлечь вещество. Для этого нужно подготовить химический реактив, называющийся «Царская водка». Он содержит 30%-й раствор соляной кислоты и 40%-й азотной. Их смешивают в пропорции 3:1, заливают в предварительно охлаждённую ёмкость и тщательно медленно перемешивают.

Окислитель отделит золото, платину и палладий. В процессе работы смесь выделяет пары, которые могут вызвать отравление и внутренние ожоги. Их запрещено вдыхать, а комнату, где проводится работа, нужно проветрить. Нельзя таким способом извлекать серебро, хром и цирконий. На поверхности этих материалов образуется толстый налёт хлорида. Благородные металлы не подвергнутся такому воздействию.

Конденсатор 2a104j

На корпусе любого конденсатора обязательно находится информация о его основных параметрах в виде не всегда понятного сочетания букв и цифр. Непременное условие применения конденсатора для нормальной работы в электронном устройстве – это правильная расшифровка маркировки, особенно если нет возможности измерить реальную его ёмкость. Существует несколько вариантов обозначений разных типов конденсаторов, незначительно отличающихся у разных фирм-производителей.

Конденсатор ёмкостью 0.1 +/- 5 % мкФ, напряжение – 100 вольт

Наиболее часто используется буквенно-цифровая кодировка, содержащая сведения об основных характеристиках изделия.

Для указания номинальной ёмкости на практике применяются стандарты IEС, которые предписывают использование в маркировке трёх или четырёх цифр.

Величина ёмкости всегда указывается в пикофарадах первыми двумя цифрами, третья – это показатель степени числа 10, или количество нолей, которое необходимо добавить и получить значение в пикофарадах. Для маркировки 104 получим: 10 + 0000 = 100 000 пФ (100 нФ, 0,1 мкФ). Правило справедливо для любого сочетания цифр, например, 103 =10 000 пФ, 222 = 22 000 пФ. Действует и для четырёхзначного кода, сколько добавить нолей так же указывается последней цифрой.

В полное обозначение типа 2a104j добавлена информация о номинальном рабочем напряжении и предельных отклонениях ёмкости. Наиболее распространены следующие коды напряжений:

Важно учитывать, что величины указаны для постоянного тока и будут несколько меньше при работе на переменном. Допуски величины ёмкости указываются буквой:. Буквы C, D используются при ёмкости до 10 пФ

Буквы C, D используются при ёмкости до 10 пФ.

Малогабаритный корпус конденсатора не позволяет разместить больше сведений, в полном наименовании изделия указываются тип диэлектрика, температурный коэффициент ёмкости, основное назначение. Например, FK28X7S2A104J – конденсатор с маркировкой 2a104j на основе металлизированной лавсановой плёнки, универсального применения, производства фирмы TDK.

Следует отметить! Если правила маркировки для величины ёмкости всегда соблюдаются, то напряжения и допуски у различных фирм могут указываться в другой кодировке, применяемой одним или группой производителей. Если надпись на неизвестном конденсаторе отлична от 2a104j, к примеру, выглядит как 104J, можно предположить, что J означает номинальное напряжение 63 вольта (встречается редко).

Рабочему напряжению 100 вольт изделий Panasonic соответствует цифра 1, 50 вольт – 1H, 63 – 1J, символы располагаются перед кодом ёмкости. В некоторых случаях рабочее напряжение или допуск могут указываться явно – в вольтах и процентах.

Конденсаторы постоянной ёмкости любого типа – основные компоненты электронных схем. 2a104j – наиболее часто встречающийся код, в большинстве случаев это плёночные конденсаторы с диэлектриком из полиэтилентерефталата, он же лавсан, полиэстер и т. д. Их в огромных количествах можно обнаружить в любом телевизоре, проигрывателе и другой массовой аппаратуре, в большинстве случаев в зелёном или красном корпусе с радиальными выводами.

Отличаются высокими эксплуатационными и электрическими характеристиками, сохраняют работоспособность в диапазоне температур от – 40 до + 105 оС. В обычных не экстремальных условиях могут функционировать практически неограниченное время, драгоценных металлов не содержат.

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Код Емкость Емкость Емкость
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Код Емкость Емкость Емкость
1622 16200 16,2 0,0162
4753 475000 475 0,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Код Емкость
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33H2 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка КК

Любая расшифровка емкостных двухполюсников выполняется двумя или тремя знаками. На элементы маленького размера наносят обозначения по стандартам EIA. Первые две цифры – это всегда обозначение емкости. Если после двух цифр стоит буква n, это нанофарады. Конденсатор с 10n на корпусе имеет номинал 10 нанофарад.

В трёхзначной кодировке третья цифра обозначает множитель нуля. Так, например, 104 на корпусе элемента – это 10 пикофарад и множитель 104.

В итоге получается:

10*104пФ = 100000 пФ = 100 нФ = 0,1 мкФ.

Исходя из этого, код 010 будет означить 0,1 пФ. Часто используют латинскую R, чтобы обозначить значение С, которое меньше 1 пФ, например, 0R7 = 0,7 пФ.

Внимание! Когда после первых двух знаков стоят цифры 9 или 8, то это значит, что величину С необходимо умножить на 0,1 и 0,01, соответственно, а не умножать на 10 со степенью 9 или 8. К примеру, 109 = 10*0,1 = 1,0 пФ; 138 = 13*0,01 = 0,13 пФ. Буквы, стоящие сразу за тремя цифрами, обозначают процент погрешности значения С

У конденсатора 104j, j означает ± 5%

Буквы, стоящие сразу за тремя цифрами, обозначают процент погрешности значения С. У конденсатора 104j, j означает ± 5%.

Для керамических конденсаторов маркировка в таблице

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах — низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Особенности применения конденсатора 2A 104 J

Энергия конденсатора Хорошие потребительские параметры обеспечивают возможность использования радиокомпонентов этой категории для решения разных инженерных задач. Конденсаторы применяют в низковольтных цепях для создания качественных фильтров подавления помех. При подготовке конструкторского расчета можно учитывать следующие преимущественные особенности:

  • минимальную паразитную индуктивность;
  • значительный ток разряда;
  • надежность;
  • длительное сохранение исходных рабочих параметров в сложных условиях эксплуатации.

При рассмотрении аналогов следует обратить внимание на относительно высокую температурную зависимость. Керамические конденсаторы обладают недостаточно большой емкостью при сравнительных габаритах

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

Емкостные величины

Конденсатор 104 емкость которого считают как 10*104, будет обладать величиной С, равной 100000 пф или 0,1 мкФ. Чтобы ответить на вопрос, конденсатор 100n это сколько пикофарад, нужно знать кратность и дробность математических приставок. Для этого можно заглянуть в таблицу или воспользоваться онлайн-переводчиком величин.

Умение расшифровывать кодировку керамических конденсаторов позволяет подобрать аналогичную деталь, заменить неисправную или применить нужную при сборке схемы. Обозначения на корпусе типа 104, 100n, 108j и другие буквенно-цифровые метки уже никого не смогут ввести в заблуждение.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: