Технические нюансы разных видов соединения проводов
Клеммник для соединения проводов
Многие важные решения зависят от реальных условий монтажа и последующей эксплуатации. Вместо дешевого проводника из алюминия профильные специалисты предпочитают медь. Некоторое увеличение стоимости компенсируется меньшим удельным сопротивлением, стойкостью к изгибам, долговечностью. Класс защитных оболочек выбирают с учетом огнестойкости строительных конструкций.
Для удобного и надежного соединения многожильных проводников пользуются наконечниками. Некоторые изделия такого типа устанавливают с применением специального прессующего инструмента.
Чем отличаются параллельное и последовательное подключения
Последовательное подключение представляет собой последовательное соединение проводников в одной общей электрической цепи.
Почему оно последовательное?
Всё очень просто – проводники располагаются в электрической цепи аналогично птицам, которые сидят на проводе – один за другим. В данном случае представим, что птицы держатся за лапы – каждая птица держит своей левой лапой правую лапу ближайшей птицы. Получаем ёлочную гирлянду. Все сидят последовательно.
Кстати говоря, если свободные лапы крайних птиц прислонить к источнику питания, то выйдет фейерверк :)…
Представим, например, светодиод, который имеет + и -. Для того, чтобы объединить такие светодиоды в единую последовательную цепь, мы должны соединить ножку + первого светодиода с плюсом источника постоянного тока, а ножку – соединить с ножкой + следующего светодиода. Ножку – следующего светодиода мы подключаем также к ножке + следующего светодиода, а – подключаем к – источника постоянного тока. Вот мы и собрали простейшую последовательную цепь из трех элементов.
Параллельное подключение выглядит немного иначе.
Если вернуться к примеру с птицами, то птицы уже не сидят на проводе одна за другой, а держат друг друга лапами.
Причем, птицы так извернулись, что одна птица держит своей правой лапой, правую лапу соседней птицы, а левой лапой левую лапу этой же птицы.
Для того, чтобы зажарить таких птиц, остаётся только прислонить букет из этих соответствующих друг другу лап к полюсам источника тока.
Здесь мы берем, скажем, два светодиода, которые имеют ножки + и – соответственно, и соединяем сначала ножки светодиодов по принципу + к + и – к -.
Собранную цепь мы подключаем к источнику тока соответственно полюсам, т.е. общий плюс от двух светодиодов присоединяем к + источника тока, а общий – к минусу источника тока. В результате получили параллельную цепь.
Смешанное соединение сочетает в себе как параллельное, так и последовательные соединения. В зависимости от цели, эти комбинации могут быть различными.
На практике чаще всего используются именно смешанные схемы. Часто анализ такого соединения вызывает затруднения у студентов и школьников.
На самом же деле, тут нет ничего сложного.
Для того, чтобы разобраться во всех параметрах, нужно попросту разложить цепь на удобные фрагменты.
Так, если мы имеем ряд последовательно подключенных резисторов, которые скомпонованы вместе с параллельно соединенными резисторами, то цепь можно разбить на два обобщенных условных участка, где и определить значимый параметр.
Часто испуг вызывает появление в схеме поворотов, углов и изгибов. Человек теряется и не понимает, что от смены направления линии соединительных проводов, логика не меняется.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением \( R_1 \) и \( R_2 \). Напряжения на резисторах соответственно \( U_1 \) и \( U_2 \).
По какой из формул можно определить напряжение U на участке АВ?
1) \( U=U_1+U_2 \)
2) \( U=U_1-U_2 \)
3) \( U=U_1=U_2 \)
4) \( U=\frac{U_1U_2}{U_1+U_2} \)
2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением \( R_1 \) и \( R_2 \). Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
1) \( I=I_1=I_2 \)
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)
3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R} и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
1) \( U=U_1+U_2 \)
2) \( I=I_1+I_2 \)
3) \( U=U_1=U_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)
4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением \( R_1 \) и \( R_2 \). Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?
1) \( U=U_1=U_2 \)
2) \( I=I_1+I_2 \)
3) \( I=I_1=I_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)
5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением \( R_1 \). По какой из формул можно определить общее сопротивление цепи \( R \)?
1) \( R=R_1{}^2 \)
2) \( R=2R_1 \)
3) \( R=\frac{R_1}{2} \)
4) \( R=\sqrt{R_1} \)
6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов \( R_1 \) и \( R_2 \) равны. Чему равно сопротивление каждого резистора?
1) 81 Ом
2) 18 Ом
3) 9 Ом
4) 4,5 Ом
7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?
1) 1/3 Ом
2) 3 Ом
3) 9 Ом
4) 27 Ом
8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 10 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 5 Ом?
1) 9 Ом
2) 11 Ом
3) 16 Ом
4) 26 Ом
9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?
1) 9 Ом
2) 10 Ом
3) 14 Ом
4) 24 Ом
10. Если ползунок реостата (см. схему) переместить влево, то сила тока
1) в резисторе \( R_1 \) уменьшится, а в резисторе \( R_2 \) увеличится
2) увеличится в обоих резисторах
3) в резисторе \( R_1 \) увеличится, а в резисторе \( R_2 \) уменьшится
4) уменьшится в обоих резисторах
11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?
Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) сопротивление реостата 2
Б) сила тока в цепи
B) напряжение на резисторе 1
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется
12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов \( R_1 \) и \( R_2 \). Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) сила тока в резисторе \( R_1 \) и \( R_2 \)
Б) напряжение на резисторе \( R_2 \)
B) общее напряжение на резисторах \( R_1 \) и \( R_2 \)
Часть 2
13. Три резистора соединены, как показано на рисунке. Сопротивления резисторов \( R_1 \) = 10 Ом, \( R_2 \) = 5 Ом, \( R_3 \) = 5 Ом. Каково напряжение на резисторе 1, если амперметр показывает силу тока 2 А?
Электрические цепи. Последовательное и параллельное соединения проводников
- Подробности
- Просмотров: 420
«Физика – 10 класс»
Как выглядит зависимость силы тока в проводнике от напряжения на нём? Как выглядит зависимость силы тока в проводнике от его сопротивления?
От источника тока энергия может быть передана по проводам к устройствам, потребляющим энергию: электрической лампе, радиоприёмнику и др. Для этого составляют электрические цепи различной сложности.
К наиболее простым и часто встречающимся соединениям проводников относятся последовательное и параллельное соединения.
Последовательное соединение проводников.
При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочерёдно друг за другом. На рисунке (15.5, а) показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления R1 и R2. Это могут быть две лампы, две обмотки электродвигателя и др.
Сила тока в обоих проводниках одинакова, т. е.
I1 = I2 = I. (15.5)
В проводниках электрический заряд в случае постоянного тока не накапливается, и через любое поперечное сечение проводника за определённое время проходит один и тот же заряд.
Напряжение на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках:
U = U1 + U2.
Применяя закон Ома для всего участка в целом и для участков с сопротивлениями проводников R1 и R2, можно доказать, что полное сопротивление всего участка цепи при последовательном соединении равно:
R = R1 + R2. (15.6)
Это правило можно применить для любого числа последовательно соединённых проводников.
Напряжения на проводниках и их сопротивления при последовательном соединении связаны соотношением
Параллельное соединение проводников.
На рисунке (15.5, б) показано параллельное соединение двух проводников 1 и 2 сопротивлениями R1 и R2. В этом случае электрический ток I разветвляется на две части. Силу тока в первом и втором проводниках обозначим через I1 и I2.
Так как в точке а — разветвлении проводников (такую точку называют узлом) — электрический заряд не накапливается, то заряд, поступающий в единицу времени в узел, равен заряду, уходящему из узла за это же время. Следовательно,
I = I1 + I2. (15.8)
Напряжение U на концах проводников, соединённых параллельно, одинаково, так как они присоединены к одним и тем же точкам цепи.
В осветительной сети обычно поддерживается напряжение 220 В. На это напряжение рассчитаны приборы, потребляющие электрическую энергию. Поэтому параллельное соединение — самый распространённый способ соединения различных потребителей. В этом случае выход из строя одного прибора не отражается на работе остальных, тогда как при последовательном соединении выход из строя одного прибора размыкает цепь. Применяя закон Ома для всего участка в целом и для участков проводников сопротивлениями R1 и R2, можно доказать, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников:
Отсюда следует, что для двух проводников
Напряжения на параллельно соединённых проводниках равны: I1R1 = I2R2. Следовательно,
Обратим внимание на то, что если в какой-то из участков цепи, по которой идёт постоянный ток, параллельно к одному из резисторов подключить конденсатор, то ток через конденсатор не будет идти, цепь на участке с конденсатором будет разомкнута. Однако между обкладками конденсатора будет напряжение, равное напряжению на резисторе, и на обкладках накопится заряд q = CU
Рассмотрим цепочку сопротивлений R — 2R, называемую матрицей (рис. 15.6).
На последнем (правом) звене матрицы напряжение делится пополам из-за равенства сопротивлений, на предыдущем звене напряжение тоже делится пополам, поскольку оно распределяется между резистором сопротивлением R и двумя параллельными резисторами сопротивлениями 2R и т. д. Эта идея — деления напряжения — лежит в основе преобразования двоичного кода в постоянное напряжение, что необходимо для работы компьютеров.
Следующая страница «Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников»»
Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»
Законы постоянного тока – Физика, учебник для 10 класса – Класс!ная физика
Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»
Виды соединений
Существует несколько способов соединения проводников между собой. Тот или иной случай используется в зависимости от вида собираемой цепи. Принято, что ток движется от положительного полюса источника энергии к минусовому. Это условное положение, оно связано с тем, что про электроток учёные узнали раньше, чем о частице, участвующей в переносе зарядов — электроне. Поэтому любая цепь будет состоять как минимум из трёх элементов: источника, проводника, нагрузки. Под последней понимается приёмник, преобразующий электричество в полезную работу.
Соединение элементов электрической цепи может быть выполнено двумя способами:
- Параллельным — все элементы одним из выводов присоединяются к одной точке, а вторым к тоже общей, но уже другой.
- Последовательным — все проводники соединяются последовательно друг за другом, то есть по прямой. Вход одного элемента подключается к входному электроду другого.
С точки зрения физики, соединение проводников определяет путь прохождения носителей зарядов. Так, при возникновении разницы потенциалов, работы по перемещению зарядов свободные электроны начинают двигаться в одну сторону. При этом в некоторых местах, точках разветвления проводящей линии происходит их перераспределение. Этот процесс довольно просто можно понять, представив циркуляцию воды по замкнутым трубам. Так и электроток проходит по всем разветвлениям и собирается в одной точке.
Таким образом, источник тока всегда будет присоединён параллельно к электрической цепи. Кратко путь прохождения заряженной частицы можно описать так. Из генератора выходит заряд, который под действием электромагнитной силы попадает в проводник. Далее образованный ток начинает двигаться по всем проводящим частям схемы, раздваиваясь и вновь соединяясь в различных точках. После он поступает на нагрузку. В ней происходит преобразование электричества, а его остатки вновь по проводнику текут на другой вывод генератора.
Последовательное соединение проводников
В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.
Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.
Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:
- Сила тока на всех участках цепи будет одинаковой.
- Общее напряжение цепи составляет сумму напряжений на каждом участке.
- Общее сопротивление включает в себя сопротивления каждого отдельного проводника.
Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.
Объединение резистивных радиокомпонентов
Для получения необходимого номинала сопротивления применяются два типа соединения резисторов: параллельное и последовательное. Если их соединить параллельно, то нужно два вывода одного резистора подключить к двум выводам другого. Если соединение является последовательным, то один вывод резистора соединяется с одним выводом другого резистора. Соединения используются для получения необходимых номиналов сопротивлений, а также для увеличения рассеивания мощности тока, протекающего по цепи.
Параллельное соединение
При параллельном подключении значение напряжения на всех резисторах одинаковое, а сила тока — обратно пропорциональна их общему сопротивлению. В интернете web-разработчики создали для расчета величины общего сопротивления параллельного соединения резисторов онлайн-калькулятор.
Рассчитывается общее сопротивление при параллельном соединении по формуле: 1 / Rобщ = (1 / R1) + (1 / R2) + …+ (1 / Rn). Если выполнить математические преобразования и привести к общему знаменателю, то получится удобная формула параллельного соединения для расчета Rобщ. Она имеет следующий вид: Rобщ = (R1 * R2 * … * Rn) / (R1 + R2 + … + Rn). Если необходимо рассчитать величину Rобщ только для двух радиокомпонентов, то формула параллельного сопротивления имеет следующий вид: Rобщ = (R1 * R2) / (R1 + R2).
При ремонте или проектировании схемы устройства возникает задача объединения нескольких резистивных элементов для получения конкретной величины сопротивления. Например, значение Rобщ для определенной цепочки элементов равно 8 Ом, которое получено при расчетах. Перед радиолюбителем стоит задача, какие нужно подобрать номиналы для получения нужного значения (в стандартном ряду резисторов отсутствует радиокомпонент с номиналом в 8 Ом, а только 7,5 и 8,2). В этом случае нужно найти сопротивление при параллельном соединении резистивных элементов. Посчитать значение Rобщ для двух элементов можно следующим образом:
- Номинал резистора в 16 Ом подойдет.
- Подставить в формулу: R = (16 * 16) / (16 + 16) = 256 / 32 = 8 (Ом).
Вам это будет интересно Устройство и принцип действия амперметра для измерения тока
В некоторых случаях следует потратить больше времени на подбор необходимых номиналов. Можно применять не только два, но и три элемента. Сила тока вычисляется с использованием первого закона Кирхгофа. Формулировка закона следующая: общее значение тока, входящего и протекающего по цепи, равен выходному его значению. Величина силы тока для цепи, состоящей из двух резисторов (параллельное соединение) рассчитывается по такому алгоритму:
- Ток, протекающий через R1 и R2: I1 = U / R1 и I2 = U / R2 соответственно.
- Общий ток — сложение токов на резисторах: Iобщ = I1 + I2.
Например, если цепь состоит из 2 резисторов, соединенных параллельно, с номиналами в 16 и 7,5 Ом. Они запитаны от источника питания напряжением в 12 В. Значение силы тока на первом резисторе вычисляется следующим способом: I1 = 12 / 16 = 0,75 (А). На втором резисторе ток будет равен: I2 = 12 / 7,5 = 1,6 (А). Общий ток определяется по закону Кирхгофа: I = I1 + I2 = 1,6 + 0,75 = 2,35 (А).
Последовательное подключение
Последовательное включение резисторов также применяется в радиотехнике. Методы нахождения общего сопротивления, напряжения и тока отличаются от параллельного подключения. Основные правила соединения следующие:
- Ток не изменяется на участке цепи.
- Общее напряжение равно сумме падений напряжений на каждом резисторе.
- Rобщ = R1 + R2 + … + Rn.
Пример задачи следующий: цепочка, состоящая из 2 резисторов (16 и 7,5 Ом), питается от источника напряжением 12 В и током в 0,5 А. Необходимо рассчитать электрические параметры для каждого элемента. Порядок расчета следующий:
- I = I1 = I2 = 0,5 (А).
- Rобщ = R1 + R2 = 16 + 7,5 = 23,5 (Ом).
- Падения напряжения: U1 = I * R1 = 0,5 * 16 = 8 (В) и U2 = I * R2 = 0,5 * 7,5 = 3,75 (В).
Не всегда выполняется равенство напряжений (12 В не равно 8 + 3,75 = 11,75 В), поскольку при этом расчете не учитывается сопротивление соединительных проводов. Если схема является сложной, и в ней встречается два типа соединений, то нужно выполнять расчеты по участкам. В первую очередь, рассчитать для параллельного соединения, а затем для последовательного.
Общие сведения
Направленное движение носителей зарядов называют электротоком. Для того чтобы он появился, необходим источник электродвижущей силы — энергии. Но внести материал под действие внешней силы оказывается недостаточно. Например, металлы отлично проводят электрический ток, а вот пластмассы — нет.
Любое физическое тело состоит из электронов и атомов. В свою очередь, последние образуются с помощью протонов и нейтронов. Условно считается, что электрон обладает отрицательным зарядом, а атом — положительным. При этом минусовая частичка вращается по орбитали и удерживается с помощью сил межатомного взаимодействия. Так называемое ядро в целом нейтральное из-за того, что количество отрицательно заряженных частиц совпадает с числом положительных протонов.
Но в некоторых материалах существуют электроны, которые не привязаны к атомам. Называют их свободными. Именно их количество определяет способность к проводимости того или иного вещества. При приложении электромагнитного поля свободные носители начинают движение в одну сторону. Тем самым изменяется потенциальная энергия, начинает течь ток.
Все вещества в физике разделяют на три больших класса:
- диэлектрики — материалы, не проводящие электроток;
- полупроводники — вещества, в которых проводимость появляется только при создании определённых дополнительных условий;
- проводники — физические тела, обладающие большим количеством свободных электронов и из-за этого хорошо проводящие электрический ток.
Характеристикой обратной проводимости является электрическое сопротивление. Эта величина определяет способность проводника препятствовать прохождению тока. Кроме этого, есть и радиодеталь, называемая резистором. Её используют специально для введения в электроцепь активного сопротивления.
Способы подключения
Можно соединять розетки последовательно, параллельно или кольцом. Чтобы достичь оптимального соотношения цены и качества, применяют разные методы соединения, учитывая мощность тип электроприборов.
Выбор конкретного способа зависит от финансовых возможностей. Лучше не экономить на элементах сети, услугах профессионалов. Пусть в квартире, доме или на даче не будет мебели, но проводка должна быть качественной.
Суть метода: к каждой точке доступа проведен отдельный провод. Как правило, его подводят от распределительного щитка комнаты, но для особо мощных приборов лучше присоединить точку доступа электричества напрямую к щитку.
Преимущества: параллельное подключение розеток предполагает, что при выходе из строя одного из элементов сети остальные будут работать дальше, так как не зависят от него. Данный способ позволяет питать самые мощные приборы, тогда как последовательное соединение розеток создает ограничение по нагрузке на каждую точку блока.
Затраты выше. В небольшой квартире это не сильно отражается на бюджете, а при создании сети крупного дома параллельное соединение розеток ощутимо повышает стоимость проекта. Стоит учитывать не только цену самих кабелей, но и стоимость работы электриков. Перегорание центрального контакта, который подводится к распределительной коробке, выведет из строя все подсоединенные розетки.
При использовании параллельного метода желательно не допускать соединение проводов, каждая линия должна быть цельным кабелем. Если технически это невозможно, стоит использовать специальные перемычки.
Суть метода: соединение двух розеток и более между собой. К первой точке прокладывается провод от щитка или распределительной коробки, а от её контактов устанавливается перемычка на контакты второй и так до последнего устройства. Способ применяется для установки блоков розеток, перемещения точки доступа к сети в другое место.
Преимущество метода – небольшой расход провода. Подключение розеток шлейфом занимает у специалистов меньше времени. Недостатки способа:
Правилами безопасности запрещено подключение к электрической розетке, подведенной подобным способ, мощных устройств. Их длительная работа приведет к перегреву проводов. Если установлена качественная автоматика, на объекте просто пропадет электричество. В противном случае возникнет пожар. Опытные электрики говорят, что соединение розеток шлейфом — одна из самых сложных задач, которая может встретиться при создании домашней проводки. Работа требует аккуратности и четкого понимания того, что вы делаете.
Соединять розетки шлейфом стоит в случаях, когда нужно создать розеточный блок для маломощных устройств: осветительных приборов, телевизора, зарядки для ноутбука и пр.
Суть метода: от главного щитка прокладывается основной кабель по всей квартире и возвращается обратно — создается кольцо. От этой магистрали создаются ответвления к распределительным коробкам. От них также делаются кольца, уже в отдельных комнатах, к которым подключаются розетки. Для России такая схема непривычна, используется редко
Преимущество метода в том, что если провод перегорает, сеть все рано работает, ток поступает с другой стороны. Но расход кабеля в такой схеме — самый высокий.
В чистом виде параллельное или последовательное соединение используют редко. Незачем в квартире или на территории дачного домика всюду создавать точки доступа, способные вынести высокие нагрузки. Такие траты рациональны только в случае, если владельцу вдруг захочется поменять ванную с гостиной местами.
Суть способа: основной кабель подключается к распределительной коробке комнаты. От неё к самой крайней точке доступа подводится кабель, а от этой точки доступа — провод к остальным приборам.
повышает надежность системы, в которой используются шлейфовые соединения; экономия проводника.
Недостаток метода в большом количестве перемычек, скруток проводов. Нужно тщательно рассчитывать проводку, чтобы знать, какие приборы можно подключать в комнате, а какие не стоит.
Электричество начинается с закона Ома.
А уж если рассматривать дилемму в контексте параллельного или последовательного соединений — считая одно соединение курицей, а другое — яйцом, то сомнений вообще нет никаких.
Простейшая электрическая цепь
Потому что закон Ома — это и есть самая первоначальная электрическая цепь. И она может быть только последовательной.
Да, придумали гальванический элемент и не знали, что с ним делать, поэтому сразу придумали еще лампочку. И вот что из этого получилось. Здесь напряжение в 1,5 В немедленно потекло в качестве тока, чтобы неукоснительно выполнять закон Ома, через лампочку к задней стенке того же элемента питания. А уж внутри самой батарейки под действием волшебницы-химии заряды снова оказались в первоначальной точке своего похода. И поэтому там, где напряжение было 1,5 вольта, оно таким и остается. То есть, напряжение постоянно одно, а заряды непрерывно движутся и последовательно проходят лампочку и гальванический элемент.
И это обычно рисуют на схеме вот так:
Схема простейшей электоцепи
По закону Ома I=U/R
Тогда сопротивление лампочки (с тем током и напряжением, которые я написал) получится
R = 1/U, где R = 1 Ом
А мощность будет выделяться P = I * U , то есть P=2,25 Вm
В последовательной цепи, особенно на таком простом и несомненном примере, видно, что ток, который бежит по ней от начала до конца, — все время один и тот же. А если мы теперь возьмем две лампочки и сделаем так, чтобы ток пробегал сначала по одной, а потом по другой, то будет опять то же самое — ток будет и в той лампочке, и в другой снова одинаковым. Хотя другим по величине. Ток теперь испытывает сопротивление двух лампочек, но у каждой из них сопротивление как было, так и осталось, ведь оно определяется исключительно физическими свойствами самой лампочки. Новый ток вычисляем опять по закону Ома.
Схема последовательного подключения
Он получится равным I=U/R+R,то есть 0,75А, ровно половина того тока, который был сначала.
В этом случае току приходится преодолевать уже два сопротивления, он становится меньше. Что и видно по свечению лампочек — они теперь горят вполнакала. А общее сопротивление цепочки из двух лампочек будет равно сумме их сопротивлений. Зная арифметику, можно в отдельном случае воспользоваться и действием умножения: если последовательно соединены N одинаковых лампочек, то общее их сопротивление будет равно N, умноженное на R, где R — сопротивление одной лампочки. Логика безупречная.
Схема последовательного подключения с двумя сопротивлениями
А мы продолжим наши опыты. Теперь сделаем нечто подобное, что мы провернули с лампочками, но только на левой стороне цепи: добавим еще один гальванический элемент, точно такой, как первый. Как видим, теперь у нас в два раза увеличилось общее напряжение, а ток стал снова 1,5 А, о чем и сигнализируют лампочки, загоревшись снова в полную силу.
Делаем вывод:
При последовательном соединении электрической цепи сопротивления и напряжения ее элементов суммируются, а ток на всех элементах остается неизменным.
Легко проверить, что это утверждение справедливо как для активных компонентов (гальванических элементов), так и для пассивных (лампочек, резисторов).
То есть это значит, что напряжение, измеренное на одном резисторе (оно называется падением напряжения), можно смело суммировать с напряжением, измеренным на другом резисторе, и в сумме получатся те же 3 В. А на каждом из сопротивлений оно окажется равным половине — то есть 1,5 В. И это справедливо. Два гальванических элемента вырабатывают свои напряжения, а две лампочки их потребляют. Потому что в источнике напряжения энергия химических процессов превращается в электроэнергию, принявшую вид напряжения, а в лампочках та же самая энергия из электрической превращается в тепловую и световую.