Как проводится и назначение опыта короткого замыкания трансформатора, методика расчета данных

Выбор проводников и изоляторов, проверка несущих конструкций по условиям динамического действия токов короткого замыкания

1.4.14. Усилия, действующие на жесткие шины и передающиеся ими на изоляторы и поддерживающие жесткие конструкции, следует рассчитывать по наибольшему мгновенному значению тока трехфазного КЗ ip с учетом сдвига между токами в фазах и без учета механических колебаний шинной конструкции. В отдельных случаях (например, при предельных расчетных механических напряжениях) могут быть учтены механические колебания шин и шинных конструкций.

Импульсы силы, действующие на гибкие проводники и поддерживающие их изоляторы, выводы и конструкции, рассчитываются по среднеквадратическому (за время прохождения) току двухфазного замыкания между соседними фазами. При расщепленных проводниках и гибких токопроводах взаимодействие токов КЗ в проводниках одной и той же фазы определяется по действующему значению тока трехфазного КЗ.

Гибкие токопроводы должны проверяться на схлестывание.

1.4.15. Найденные расчетом в соответствии с 1.4.14 механические усилия, передающиеся при КЗ жесткими шинами на опорные и проходные изоляторы, должны составить в случае применения одиночных изоляторов не более 60% соответствующих гарантийных значений наименьшего разрушающего усилия; при спаренных опорных изоляторах — не более 100% разрушающего усилия одного изолятора.

При применении шин составных профилей (многополосные, из двух швеллеров и т. д.) механические напряжения находятся как арифметическая сумма напряжений от взаимодействия фаз и взаимодействия элементов каждой шины между собой.

Наибольшие механические напряжения в материале жестких шин не должны превосходить 0,7 временного сопротивления разрыву по ГОСТ.

Как избежать КЗ?

Понятно, что полностью избежать этого неприятного явления невозможно – тут велик элемент случайности. Однако, в наших силах существенно снизить риск возникновения КЗ. И тут колоссальное значение приобретает регулярный осмотр и техническое обслуживание электросетей.

Примеры превентивных мер:

  • чистка токоведущих частей, контактов и изоляторов от пыли и грязи,
  • проверка защиты от влажности,
  • проверка целостности укладки и монтажа,
  • ограждение и дополнительная защита опасных участков,
  • вывешивание и наклеивание предупреждающих табличек и надписей,
  • проверка и протяжка контактов,
  • обрезка деревьев и устранение других опасных факторов.

Как думаете, какие нужны превентивные меры защиты от КЗ на фото ниже?

Водосточная труба, электрощиты и гофра, уходящая под плитку. Инсталляция в старой части Батуми

В серьезных организациях регулярно проводят проверку кабелей и контактов тепловизором, а также измерение сопротивления изоляции и испытания изоляции высоковольтным напряжением.

Межфазное замыкание: способы защиты и предотвращения, места возникновения

При эксплуатации высоковольтных электрических цепей нередко явление, определяемое нормативными документами как межфазное замыкание. Такое отклонение от нормального режима работы систем электроснабжения связано с неисправностями питающих линий, последствия которых бывают непредсказуемыми. Особо опасный характер возможных повреждений вынуждает разобраться с рядом вопросов, касающихся того, что собой представляет это явление, к каким неприятностям оно приводит и как их избежать.

Понятие и причины замыканий

Причиной замыкания, как правило, становится нарушение изоляции проводов

Межфазным замыканием электричества в многофазных цепях называют непреднамеренное соединение между собой изолированных проводников с поврежденным защитным покрытием.

В отдельных случаях оно проявляется как однофазное замыкание на землю или корпус работающего электрооборудования.

Такое состояние электрической сети является нарушением нормального режима работы системы и трактуется как аварийное. В этом случае в местах замыкания двух проводников или в точках их контакта с землей величина тока существенно возрастает. Максимальное его значение достигает порой нескольких тысяч Ампер. Неуправляемые потоки электричества способны привести к разрушительным последствиям.

Причинами возникновения аварийных ситуаций в высоковольтных электрических сетях являются:

  • Повреждение защитной изоляции каждого из фазных проводников из-за нарушений правил эксплуатации кабельных линий.
  • Случайный обрыв одной из жил воздушного кабеля и его замыкание на другой провод или землю.
  • Замыкание провода с поврежденной изоляцией на корпус действующей электроустановки.

Каждый из случаев возникновения короткого замыкания является следствием грубейшего нарушения правил эксплуатации электрооборудования и в соответствии с требованиями нормативных документов нуждается в тщательном расследовании.

Виды аварийных замыканий

По типу электропитания все короткие замыкания делятся на повреждения, произошедшие в однофазных или в трехфазных цепях, а по их количеству – на одиночные и двойные КЗ. Самый простой случай – однофазные линии, в которых возможно только одиночное замыкание фазы на нейтраль или землю. Трехфазное короткое замыкание отличается большим вариантом возможностей, поскольку число проводов в кабеле увеличивается до 3-х. При этом возможны следующие варианты повреждений:

  • Замыкание двух высоковольтных проводов между собой.
  • КЗ одного провода на нейтраль или землю (однофазные короткие замыкания).
  • Контакт сразу двух проводников с поверхностью грунта.

Эксплуатация электрических систем — Ограничение токов короткого замыкания

С ростом установленной мощности электростанций и единичной мощности автотрансформаторов связи увеличиваются токи КЗ в питающей сети ЭЭС. Изменяются также частотные характеристики ЭС, приводящие в ряде случаев к неблагоприятным изменениям процесса восстанавливающегося напряжения (см. § 4.7). Отключающие способности выключателей должны приводиться в соответствие с изменениями уровней токов КЗ. Отключающую способность некоторых выключателей можно увеличить в результате их модернизации. Другие же выключатели необходимо заменять на аппараты большей отключающей способности, что связано с проектированием и последующей реконструкцией энергетических объектов. Из-за задержки в проведении этих работ в питающей сети часто эксплуатируются десятки выключателей, отключающая способность которых не соответствует токам КЗ. В этом случае приходится приводить токи КЗ в соответствие с отключающей способностью выключателей. Для этого можно использовать несколько методов: опережающее деление электрической сети; секционирование сети; ограничение числа заземленных нейтралей трансформаторов. Опережающее деление электрической сети выполняется на выключателях РУ электростанций. Его сущность заключается в том, что прежде чем отключится линейный выключатель поврежденной ВЛ, имеющий недостаточную отключающую способность, отключается выключатель схемы коммутации электростанции, например междушинный, который отделяет от места КЗ часть генерирующих источников (переводит их работу на место КЗ через большое сопротивление сети).


Рис. 7.12. Схема объекта, на котором применяется автоматика снижения токов КЗ В результате ток КЗ снижается до величины, которую может отключить линейный выключатель В2 (рис. 7.12). После устранения повреждения выключатель, выполнивший опережающее деление, вновь включается в работу. Выключатель опережающего деления не отключает ток КЗ, а переводит его на другую ветвь схемы сети. Поэтому влияние на его надежность оказывает лишь оперативное переключение, которое на порядок ниже влияния отключения тока КЗ (см. табл. 7.3). Чтобы обеспечить селективное опережающее отключение, не используя на линейном выключателе дополнительную выдержку времени, применяют защиту с практически безынерционными электронными выходными органами, выполненными, например, на тиристорах. Для этого на выключателе опережающего деления устанавливается защита, выполняющая роль автоматики снижения тока КЗ (АСТКЗ). Она содержит орган, выявляющий недопустимый ток КЗ, и АПВ, восстанавливающее первоначальную схему. Секционирование питающей сети с целью снижения токов КЗ может осуществляться в сети вторичного напряжения (220 кВ и ниже), питающейся от межсистемной сети. В этом случае от автотрансформаторов связи питаются районы сети ЭЭС, размыкающиеся в определенных точках. Местоположение нормальных разрезов выбирается таким, чтобы одновременно удовлетворялось и требование минимизации потерь энергии в сетях. Размыкание питающей сети в определенной степени снижает надежность ее работы. Во избежание ущерба при аварийном отключении источника питания в местах нормальных разрезов устанавливают АВР, включающий разомкнутый выключатель, который подает питание от смежной питающей подстанции при исчезновении напряжения. Разомкнутые выключатели должны быть защищены от перенапряжений. Ограничение числа заземленных нейтралей трансформаторов в сети 110 кВ производится для снижения и стабилизации токов замыкания на землю. Для различных схем ЭС, включая ремонтные, предусматриваются трансформаторы, нейтрали которых незаземлены (у автотрансформаторов связи нейтрали должны быть заземлены). От перенапряжений незаземленные нейтрали защищаются разрядниками. В связи с тем, что изоляция нейтрали трансформаторов не выполняется на фазное напряжение, а изоляция фаз не соответствует линейному напряжению, необходимо исключить возможность создания ситуаций, когда при работе генерирующих источников и трансформаторов в аварийных условиях трансформаторы оказываются в отделившейся части сети без заземленных нейтралей. Поэтому нейтрали повышающих трансформаторов, работающих в блоке с генераторами, заземляются. Заземление нейтралей остальных трансформаторов выбирается так, чтобы поддерживать токи замыкания на землю в определенных пределах и сохранять их стабильность в условиях, создающихся при ремонтах трансформаторов (автотрансформаторов) и ВЛ.

  • Назад
  • Вперед

Устранение последствий короткого замыкания

Чаще всего все сводится к замене поврежденного участка проводки, причем практически гарантированно потребуется наращивать кабель вместо его выгоревшего куска. Основные правила следующие:

  • Пространство прилегающее к месту возникновения КЗ надо тщательно вычистить от сажи – она может спровоцировать повторение замыкания.
  • Не стоит экономить на проводе и пытаться оставить токоведущую жилу, на которой сгорела изоляция – всегда лучше полностью заменить провод.
  • Если полноценного замыкания еще не произошло, но розетки начали подплавляться, то не стоит пробовать их ремонтировать – после многочисленных нагревов/охлаждений меняется структура металла и устройство становится более уязвимым.

Если проводка начала коротить «от старости» (изоляция стала хрупкой), то это настоятельный сигнал к полноценному ремонту – он в любом случае обойдется дешевле, чем устранение последствий возможного пожара.

Что такое короткое замыкание — причины, чем опасно и что делать • Мир электрики
Вот мы и рассмотрели причины возникновения короткого замыкания, последствия и способы предотвращения опасного явления. Надеемся, предоставленная информация была для вас полезной!

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Короткое замыкание: причины возникновения и способы предотвращения В случае неблагоприятного стечения обстоятельств это может спровоцировать возникновение КЗ через микродугу, причем это самый тяжелый случай с точки зрения поиска неисправности. Спрашивайте, я на связи!

Расчет ударного тока КЗ в сети свыше 1 кВ

В данной статье речь пойдет о вычислении ударного тока к.з. в сети свыше 1 кв, согласно РД 153-34.0-20.527-98.

При выборе аппаратов и проводников учитывают ударный ток к.з. наступающий через 0,01 с с момента возникновения короткого замыкания.

Ударным током (iуд.) принято называть наибольшее возможное мгновенное значение тока к.з (см. рис.5 ).

Расчет ударного тока к.з. для схемы с последовательным включением элементов

Для схем с последовательным включением элементов ударный ток к.з. определяется по выражению 5.16 :

где:

  • Iп.о – начальное значение апериодической слагающей трехфазного тока к.з.
  • Kуд – ударный коэффициент для времени t = 0,01 с, определяется по одной из следующих выражений 5.17 – 5.19 :

Если же Xэк/Rэк > 5, допускается определять ударный коэффициент по выражению 5.20 :

Та – постоянная времени затухания апериодической составляющей тока к.з, определяется по выражению 65 и по выражению 5.11 :

где:

  • Хэк и Rэк – соответственно суммарное индуктивное и активное сопротивления схемы от источника питания до места к.з.
  • ω = 2πf = 2*3,14*50 = 314 – угловая частота (f = 50 Гц – частота сети).

Для ориентировочных расчетов значение Та можно определять по таблице 3.8 .

Расчет ударного тока к.з. для схемы с разветвленным включением элементов

Для схем с разветвленным включением элементов, ударный ток к.з. определяется по такой же формуле 5.16 как и при схеме с последовательном включении элементов:

Ударный коэффициент определяется по следующим выражениеям 5.17а – 5.18а :

При Xэк/Rэк > 5, ударный коэффициент определяется по аналогичной формуле как и при схеме с последовательным включением элементов:

где: Та.эк – эквивалентная постоянная времени затухания апериодической составляющей тока к.з, определяется по выражению 67 и по выражению 5.13 :

где:

Хэк и Rэк – соответственно суммраное индуктивное и активное сопротивления, полученные из схемы замещения, составленной из индуктивных и активных сопротивлений, поочередным исключением из нее сначала всех активных, а затем всех индуктивных сопротивлений.

Для схемы последовательного включения так и для схемы разветвленного включения согласно п.5.3.3 .

При определении Та (Та.эк) необходимо учитывать, что синхронные машины вводяться в расчетную схему индуктивным сопротивлением обратной последовательности – Х2(ном) и сопротивлением обмотки статора при нормальной рабочей температуре – Rа.

Для асинхронных двигателей учитывается индуктивное сопротивлением обратной последовательности – Х2(ном) равное сверхпереходному индуктивному сопротивлению Х”.

Сверхпереходное сопротивление электродвигателя и сверхпереходное ЭДС междуфазное в относительных единицах, можно определить по таблице 5.2 :

Соотношения x/r для различных элементов сети приведены ниже .

Расчет ударного тока к.з. с учетом влияния синхронных и асинхронных электродвигателей

Согласно п.5.6.3 ударный ток к.з. от синхронных и асинхронных электродвигателей определяется по выражению 5.16 :

где: Kуд – ударный коэффициент цепи двигателя, определяется согласно гл. 5.6 и таблиц 2.74 — 2.75 .

Также для ориентировочных расчетов ударный коэффициент для двигателей, связанных непосредственно с местом кз через линейные реакторы или кабельные линии можно определить согласно таблицы 6.3 (стр.213) типовой работы №192713.0000036.02955.000АЭ.01 «Релейная защита элементов сети собственных нужд 6,3 и 0,4 кВ электростанций с турбогенераторами» Атомэнергопроект.

Данные двигатели объединяются в один эквивалентный двигатель суммарной мощности ΣРном.дв., со средними расчетными параметрами, значения которых приведены в таблице 6.3.

Литература:

  1. Беляев А.В. Как рассчитать ток короткого замыкания. Учебное пособие. 1983 г.
  2. Электрооборудование станций и подстанций. Второе издание. Л.Д. Рожкова, В.С. Козулин. 1980 г.
  3. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования — РД 153-34.0-20.527-98.
  4. Расчеты токов короткого замыкания для релейной защиты. Учебное пособие. Часть первая. И.Л.Небрат 1996 г.
  5. Справочная книга электрика. Григорьева В.И. 2004г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Ограничение токов короткого замыкания

Максимальный уровень токов короткого замыкания ограничивается отключающей способностью выключателей или термической стойкостью кабелей. Искусственное ограничение токов короткого замыкания позволяет применять более легкие и дешевые аппараты и токоведущие части меньшего сечения. Большинство выключателей имеют предельный ток отключения , равный 40 кA. Если ток короткого замыкания превышает необходимо его ограничение. Если ток короткого замыкания меньше целесообразность ограничения определяется технико-экономическими расчетами.

Ограничение тока короткого замыкания достигается увеличением сопротивления сетей:

· путем осуществления раздельной работы питающих агрегатов, трансформаторов и линий электропередачи;

· включения в цепи дополнительных сопротивлений.

Ограничение токов к.з. обычно осуществляется (рис. 35) в две ступени:

· на электростанциях с помощью секционных реакторов (СР) и трансформаторов с расщепленными обмотками ток к.з. ограничивается до экономически целесообразных для станций значений;

· в распределительных сетях с помощью схемных решений (раздельной работы трансформаторов и ЛЭП), линейных реакторов (ЛР) и трансформаторов с расщепленными обмотками токи к.з. ограничиваются до значений, экономически целесообразных для сетей.

Рис. 35. Пример использования способов ограничения токов короткого замыкания

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Основные характеристики ДГР

Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.

 

Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора

Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.

Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.

Таблица 2 – Параметры ДГР

Тип реактора

РДМР

РЗДПОМ

РУОМ

ASR, ZTC

TRENCH

Охлаждение

Масляное

Масляное

Масляное

Масляное

Масляное,

сухое

Исполнение

Одинарное

Одинарное

Одинарное

Одинарное, комб-ное

Одинарное, комб-ное

Класс напряжения,

кВ

6, 10

6, 10,

20, 35

6, 10

6, 10,

20, 35

6, 10,

20, 35

Кратность регулирования

8–25

5

10

10

10

Диапазон мощностей,

кВА

300–820

(1520)

120–1520

90–1520

50–8000

100–1000

При выборе дугогасящего реактора рекомендуется следующий порядок; определяется максимальный емкостный ток замыкания на Землю; определяется суммарная мощность реакторов из условия полной компенсации емкостного тока (резонансная настройка); определяется число реакторов (если IС > 50 А, рекомендуется применять не менее двух реакторов);

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания. Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.
  2. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  3. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  4. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  5. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗ Процентное соотношение к общему числу (%)
К(З) 5,0
K(2) 10,0
K(1) 65,0
K(1,1) и K(1+1) 20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

Понятие «короткое замыкание»

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, что не предусмотрено нормальным режимом работы цепи и приводит к критичному росту силы тока в месте соединения.

Таким образом, КЗ приводит к образованию разрушительных токов, превышающих допустимые величины. Что способствует выходу приборов из строя и повреждениям проводки. Для того, чтобы понять, что может спровоцировать этот процесс, нужно детально разобраться в процессах, происходящих при коротком замыкании.

По закону Ома сила тока (I) обратно пропорциональна сопротивлению (R)

Пример применения закона Ома к лампе накаливания мощностью в 100 Вт, подключенную к электросети в 220В. Здесь можно с помощью закона Ома рассчитать величину тока для нормального режима работы и короткого замыкания. Сопротивление источника и электропроводки проигнорируем.

Электрическая схема нормального режима работы (a) и короткого замыкания (b)

Вот пример нормальной цепи, по которой ток течет от источника к лампе накаливания. На схеме ниже изображен этот процесс.

Пример нормальной цепи, ток течет от источника к лампе

А теперь, представим, что произошла поломка, из-за которой в цепь попал дополнительный проводник.

Дополнительный проводник замыкает цепь

Сопротивление проводников стремится к нулю. Вот почему большая часть электрического тока после замыкания сразу потечет через дополнительный проводник, как бы избегая лампы накаливания с высоким сопротивлением. Результатом будет некорректная работа прибора, потому, что он не получит достаточно тока. И это еще не самый опасный вариант.

Как известно, по закону Ома сила тока обратно пропорциональна сопротивлению. Когда давление в цепи падает в результате короткого замыкания — на несколько порядков возрастет сила тока. По закону Джоуля – Ленца при росте силы тока увеличивается выделение тепла.

При многократном росте силы тока проводники мгновенно нагреваются. А теперь представим, что в сети нет предохранителей либо они не сработали достаточно быстро. В результате проводники плавятся, а изоляция начинает гореть. Зачастую, так возникают пожары в результате короткого замыкания.

Виды коротких замыканий

Схемы кз

Короткие замыкания в быту:

  • однофазные – происходит, когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего. Обозначен, как однофазное с землей К(1)
  • двухфазные – ( К2)происходит, когда одна фаза замыкается на другую, относится к несимметричным процессам. Есть еще 2-х фазное с землей К (1,1)в системах с заземленной нейтралью;
  • трехфазные – происходит, когда замыкаются сразу три фазы. Самый опасный вид КЗ. Это единственный вид короткого замыкания, при котором не происходит перекос фаз, процесс протекает симметрично;

Вот типичная картина последствий короткого замыкания: оплавленная или сгоревшая изоляция, запах гари, следы оплавления или горения внутри электрического прибора.

Последствия короткого замыкания в электрощите многоэтажного дома

В реальных условиях короткое замыкание происходит в таких ситуациях:

  • Повреждение изоляции проводников. Это может произойти из-за изношенности изоляции, а так же механического воздействия на неё. Жилы кабеля замыкаются напрямую или через корпус оборудования.
  • Некорректное подключение электроприборов к сети. Данный случай характеризуется допущением ошибки мастера или владельца квартиры из-за чего и происходит короткое замыкание.
  • Попадание в электрический прибор воды. Конечно же нельзя допускать попадание воды на электроприборы, ведь она является хорошим проводником электричества и замыкает контакты.

В обустройстве быта короткое замыкание происходит во время ремонта стен, если случайно повредить проводку. Также аварии случаются в квартирах и домах со старой проводкой. В результате чрезмерного нагревания она повреждается в следствие воздействия воды или грызунов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: