Содержание
- О работе тока
- Цепи переменного тока
- Задачи
- Что мы узнали?
Бонус
- Тест по теме
- Закон Ома для участка цепи
- Закон Джоуля-Ленца Мощность электрического тока
- Электроскоп
- Удельное сопротивление
- Параллельное соединение проводников
- Последовательное соединение проводников
- Зависимость силы тока от напряжения
- Направление электрического тока
- Электрическое напряжение
- Взаимодействие заряженных тел
- Электрический ток в металлах
- Расчет сопротивления проводника
- Нагревание проводников электрическим током
- Непроводники электричества
- Электрическая цепь и ее составные части
- Измерение силы тока
- Электрический ток и его источники
- Единица измерения напряжения
- Единица силы тока
- Делимость электрического заряда
- Электрическое сопротивление проводника
- Единица измерения напряжения
- Закон Ома для однородного участка цепи
- Закон Ома для неоднородного участка цепи
- Удельное сопротивление меди
- Удельное сопротивление проводника
- Удельное электрическое сопротивление
- Последовательное и параллельное соединение проводников
- Напряжение на участке электрической цепи
- Напряжение электрического тока
показать все
По многочисленным просьбам теперь можно: сохранять все свои результаты, получать баллы и участвовать в общем рейтинге.
- 1. Алина Сайбель 148
- 2. Михаил Тяпин 95
- 3. Денки Каминари 93
- 4. Ольга Жаркова 56
- 5. Alex Samin 23
- 6. Елизавета Мельникова 21
- 7. User1 10
- 8. Дмитрий Мантуров 10
- 9. Аркадий Кондюков 9
- 10. Kirra C. 5
- 1. Мария Николаевна 14,295
- 2. Кристина Волосочева 13,830
- 3. Лариса Самодурова 13,785
- 4. Ekaterina 13,631
- 5. Liza 13,310
- 6. Юлия Бронникова 13,260
- 7. Алина Сайбель 13,246
- 8. Darth Vader 12,816
- 9. TorkMen 12,566
- 10. Влад Лубенков 12,025
Работа постоянного тока
Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.
Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).
Коэффициент полезного действия электрического прибора
Как известно, идеальных машин и механизмов не существует (то есть таких, которые бы полностью превращали один вид энергии в другой или генерировали бы энергию). Во время работы устройства обязательно часть затраченной энергии уходит на преодоление нежелательных сил сопротивления или просто «рассеивается» в окружающую среду. Таким образом, только часть затраченной нами энергии уходит на выполнение полезной работы, для выполнения которой и было создано устройство.
Другими словами, КПД показывает, насколько эффективно используется затраченная работа при ее выполнении, например, электрическим прибором.
КПД (обозначается греческой буквой η («эта»)) — физическая величина, которая характеризует эффективность электрического прибора и показывает, какая часть полезной работы в затраченной.
КПД определяется (как и в механике) по формуле:
η = AП/AЗ·100%
Если известна мощность электрического тока, формулы для определения ККД будут выглядеть так:
η = PП/PЗ·100%
Прежде чем определять КПД некоторого устройства, необходимо определить, что является полезной работой (для чего создано устройство), и что является затраченной работой (работа выполняется или какая энергия затрачивается для выполнения полезной работы).
Понятие электрической мощности и способы ее расчета
С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.
В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.
Через напряжение и ток
Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I
Где:
- P – активная мощность;
- U – напряжение приложенное к участку цепи;
- I — сила тока, протекающего через соответствующий участок.
Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.
Через напряжение и сопротивление
Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:
I = U/R
Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:
P = U*(U/R)=U2/R
Где,
- P – величина нагрузки;
- U – приложенная разность потенциалов;
- R – сопротивление нагрузки.
Через ток и сопротивление
Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.
Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:
U=I*R
после того как выражение подставить в формулу мощности, получим:
P = (I*R)*I =I2*R
Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.
Полная мощность в цепи переменного тока
Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:
Где,
- S – полная мощность
- P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
- Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Также составляющие вычисляются через тригонометрические функции, так:
P = U*I*cosφ
Q = U*I*sinφ
что активно используется в расчете электрических машин.
Рис. 1. Треугольник мощностей
Что такое мощность в электричестве
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как измерить мощность
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах. Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Работа в термодинамике
В чем измеряется работа сил в термодинамике? Термодинамика рассматривает процессы преобразования системы, в результате которых меняется объём. При этом внутреннее изменение энергии тела есть работа. Лучше всего разобрать это на примере воздействия газа на поршень. Пусть газ давит на поверхность поршня с силой F→’. Она, согласно 3-му закону Ньютона, направлена в противоположную сторону той силе, с которой поршень воздействует на газ. Это значит, F→’ = – F→.
Под давлением газа (p) поршень начинает совершать перемещение ∆h. В случае, если оно мало, то можно говорить о том, что p = const. Тогда работа будет равна A’ = F’*∆h. Можно подставить сюда значение F’= p*S, где S – площадь поверхности, на которую давит газ. После этого выражение примет вид:
A’ = p*S*∆h = p*∆V,
где ∆V – изменение объёма.
Важно! Работа положительная, если газ расширяется. Это обусловлено тем, что поршень движется в ту же сторону, куда направлена F→’. При сжимании газа его работа имеет отрицательное значение, потому как поршень перемещается в противоположную от F→’ сторону
При сжимании газа его работа имеет отрицательное значение, потому как поршень перемещается в противоположную от F→’ сторону.
Работа в термодинамике
Фактическая и номинальная мощность
При измерении мощности в потребителе формула мощности тока позволяет определить ее фактическую величину, то есть ту, которая реально выделяется в данный момент времени на потребителе.
В паспортах различных электрических приборов также отмечают значение мощности. Ее называют номинальной. В паспорте электрического прибора обычно указывают не только номинальную мощность, но и напряжение, на которое он рассчитан. Однако напряжение в сети может немного отличаться от указанного в паспорте, например, увеличиваться. С увеличением напряжения увеличивается и сила тока в сети, а следовательно, и мощность тока в потребителе. То есть значение фактической и номинальной мощности прибора могут отличаться. Максимальная фактическая мощность электрического устройства больше номинальной. Это сделано с целью предотвращения выхода прибора из строя при незначительных изменениях напряжения в сети.
Если цепь состоит из нескольких потребителей, то, рассчитывая их фактическую мощность, следует помнить, что при любом соединении потребителей общая мощность во всей цепи равна сумме мощностей отдельных потребителей.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор \( R_1 \) в четыре раза меньше сопротивления резистора \( R_2 \). Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора \( R_1 \) в 3 раза больше сопротивления резистора \( R_2 \). Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с
2) 2000 с
3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока
ФОРМУЛЫ
1) \( \frac{q}{t} \)
2) \( qU \)
3) \( \frac{RS}{L} \)
4) \( UI \)
5) \( \frac{U}{I} \)
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Что такое мощность электрического тока
Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.
В случае с электричеством она бывает двух видов:
- Активная – превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
- Реактивная – нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения – вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.
На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.
Измерения
Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.
Прямые замеры
Ваттметры выпускают в разных модификациях для сетей ~220V и ~380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников. Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.
Косвенные замеры
Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.
Фазометры
С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.
Регулирование cos
Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.
Определения
Электрический ток
Электрический ток I определяется как направленное движение электрических зарядов вдоль линии (например, тонкого провода), по поверхности (например, по листу проводящего материала) или в объеме (например, в электронной или газоразрядной лампе). В СИ единицей измерения электрического тока является ампер, определяемый как поток электрических зарядов через поперечное сечение проводника со скоростью один кулон в секунду.
Объемная плотность тока
Плотность тока (называемая также объемной плотностью тока) представляет собой векторное поле в трехмерном проводящем пространстве. В каждой точке такого пространства плотность тока представляет собой полный поток электрических зарядов в единицу времени, проходящий через единичное поперечное сечение. Обозначается объемная плотность векторным символом J. Если мы рассмотрим обычный случай проводника с током, то ток в амперах делится на поперечное сечение проводника. В СИ объемная плотность тока измеряется в амперах на квадратный метр (А/м²).
Например, если по мощной шине электрической подстанции с поперечным сечением 3 х 33,3 мм = 100 мм² = 0,0001 м² течет ток 50 ампер, то плотность тока в таком проводнике будет составлять 500 000 А/м².
Линейная плотность тока
Иногда в электронных устройствах ток течет через очень тонкую пленку металла или тонкий слой металла, имеющий переменную толщину. В таких случаях исследователей и конструкторов интересуют только ширина, а не общее поперечное сечение таких очень тонких проводников. В этом случае они измеряют линейную плотность тока — векторная величину, равную пределу произведения плотности тока проводимости, протекающего в тонком слое у поверхности тела, на толщину этого слоя, когда последняя стремится к нулю (это определение по ГОСТ 19880-74). В Международной системе единиц (СИ) линейная плотность тока измеряется в амперах на метр и в системе СГС в эрстедах. 1 эрстед равен напряжённости магнитного поля в вакууме при индукции 1 гаусс. Иначе линейную плотность тока определяют как ток, приходящийся на единицу длины в направлении, перпендикулярном току.
Например, если ток величиной 100 мА течет в тонком проводнике шириной 1 мм, то линейная плотность тока равна 0,0001 A : 0,001 m = 10 ампер на метр (А/м). Линейная плотность тока обозначается векторным символом А.
Поверхностная плотность тока
Линейная плотность тока тесно связана с понятием поверхностной плотности тока , которая определяется как сила электрического тока, протекающего через поперечное сечение проводящей среды единичной площади и обозначается векторным символом K. Как и линейная плотность тока, поверхностная плотность тока также является векторной величиной, модуль которой представляет собой электрический ток через поперечное сечение проводящей среды в данном месте, а направление перпендикулярно к площади поперечного сечения проводника. Такой проводящей средой может быть, например, проводник с током, электролит или ионизированный газ. В системе СИ плотность тока измеряется в амперах на квадратный метр.
Вектор или скаляр?
Отметим, что в отличие от векторной плотности тока, сам ток является скалярной величиной. Это можно объяснить тем фактом, что ток определяется как количество зарядов, перемещающихся в единицу времени; поэтому было бы нецелесообразно добавлять направление к величине, представляющей количество в единицу времени. В то же время, плотность тока рассматривается в объеме с множеством поперечных сечений, через которые проходит ток, поэтому имеет смысл определять плотность тока как вектор или как векторное пространство. Можно также отметить, что плотность тока является вектором в связи с тем, что это произведение плотности заряда на скорость его перемещения в любом месте пространства.
Потребляемая мощность
Она расходуется на то, чтобы в проводнике происходило перемещение электронов. В случае одного электрона, имеющего единичный заряд, она сопоставима с величиной напряжения сети. Полная энергия, которая необходима для перемещения всех электронов, будет определяться как произведение напряжения на число электронов, находящихся в цепи при работе электрического прибора. Ниже представлена формула электрической мощности:
Р=(U*Q)/t.
Учитывая, что число электронов, протекающих за промежуток времени через поперечное сечение проводника, представляет собой электрический ток, можно представить его в выражение для искомой величины. Формула электрической мощности будет выглядеть:
Р=I*U.
В реальности приходится вычислять не саму мощность, а величину тока, зная напряжение сети и номинальную мощность. Определив ток, который потребляется определенным прибором, можно соотнести номинал розетки и автоматического выключателя.
По какой формуле вычисляется
Формула механической мощности — средняя и мгновенная мощность
В следующих пунктах рассмотрены подробно типичные ситуации (подключаемые устройства):
- источник постоянного напряжения (светодиоды);
- ~220V, одна фаза (кухонная вытяжка);
- ~380V, три фазы (станок).
Расчет силы тока по мощности и напряжению в сети постоянного тока
С помощью изученных принципов можно выяснить, как посчитать мощность (пример):
- к источнику 5 V последовательно подключают несколько светодиодов;
- измеряют ток в цепи с помощью мультиметра (0,85 А);
- для определения количества ватт формула «P = I * U» поможет узнать результат: 5 * 0,85 = 4,25 Вт.
Как узнать мощность однофазной нагрузки
Без поправочных коэффициентов можно применить аналогичный алгоритм при подключении лампочки накаливания. Однако в рассматриваемом примере (вытяжка) вычисляют мощность переменного тока по формуле с учетом индуктивных параметров электродвигателя. В этом случае применяют специальный корректирующий множитель – cosϕ.
Треугольник мощностей
Как определить мощность, показывает следующий алгоритм действий:
- берут из сопроводительной документации значение cosϕ (например, 0,75);
- эти же данные производители указывают на типовых шильдиках;
- измеряют ток (1,25 А);
- напряжение известно – 220 B;
- чтобы определить мощность тока, формула дополняется соответствующим множителем:
Pакт = 1,25 * 220 *0,75 = 206,25 Вт.
Как найти мощность тока в трехфазной сети
В этих сетях электричество поступает к потребителям по разным цепям. Вместо «фазного» в данном случае применяют понятие «линейного» напряжения, которое измеряется между отдельными проводниками (Uлин=380В). Чтобы рассчитать мощность корректно, применяют дополнительный множитель (√3 = 1,7321).
Средняя P в активной нагрузке
Зная мощность переменного тока (350 Вт), после простого преобразования базовой формулы можно вычислить:
I = P/ (U * √3 * cosϕ) = 350 / (380 * 1,7321 * 0,75) = 350/ 493,6485 = 0,7 А.
Электрический ток и нагрузка
В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам — это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения.
В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка — это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка — от слова «нагружать». Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки
Теперь давайте представим все это с точки зрения гидравлики и механики.
Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.
Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.
Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.
Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?
Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе. Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.
А если нагрузить вал, чтобы тот поднимал грузовой лифт?
Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.
Давайте разберем еще один пример для понимания. Все тот же самый рисунок:
Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.
Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет…
Давайте снова вернемся к мини-мельнице
Что будет если поток воды в трубе увеличить в несколько раз? Мельница будет крутиться так, что ее порвет нахрен! А если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.
Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.
Что такое мощность в электричестве: просто о сложном
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.
Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.