Как настроить PID по шагам
Убедитесь, что двигатели сбалансированы и у квадрокоптера нет вибрации настолько, насколько есть возможность ее снизить. Попытка настроить PID без «чистого» гироскопа (балансировка и снижение вибрации делается для того, чтобы гироскоп работал без помех) — это все равно, что строить дом без хорошего фундамента. Это видео расскажет вам о простом способе проверки вибрации. Отрегулируйте настройки низкочастотного фильтра (lowpass filter) по мере необходимости, чтобы достигнуть «чистого» сигнала гироскопа
Важно, чтобы этот шаг выполнялся в режиме Акро, даже если вы всегда летаете в режиме стабилизации/горизонта. Режимы Angle\Horizont имеют свои значения и мешают настройке PID
Пример параметров PID ниже соответствует Rewrite PID (PID controller #1). При выполнении этой первоначальной настройки установите значение TPA равным 0. При необходимости TPA может быть добавлен позже. Начинать настройки нужного с маленьких изменений настроек по умолчанию. и начинать нужно с коэффициента Р. Значение Р на Pitch и Roll равное 4.0 будет хорошей отправной точкой.Также, следует снизить I и D у Pitch и Roll для настройки Р с минимальными помехами. Поэтому рекомендуется установить для I — 20, а для D — 5. Для Yaw целесообразно взять значение по умолчанию и разделить на 2. и немного уменьшить значение I, чтобы исключить эту ось в качестве источника колебаний. Yaw настраивается последним. Во время тестовых полетов, увеличивайте параметр Р по оси Roll до тех пор пока не увидите колебания при приближении к полному газу, а также не услышите видимые и слышимые колебания. Затем установите значение параметра Р равным примерно 70% от значения вызвавшего колебания. Теперь думаю понятно, почему без опыта полетов на конкретном квадрокоптере у вас не получится настроить его PID’ы? Повторите шаг 4 для оси Pitch. Проверьте, держит ли квадрокоптер нужный угол наклона Roll и не дрейфует ли он при крене (roll), а затем несколько раз дайте резкий газ вверх и резко отпустите его в 0
Вот тут обратите внимание — угол крена который вы сделали до игры газом не должен существенно меняться. Если угол отклонения кажется вам сильно отклонившимся (дрон начал дрейфовать), увеличьте параметр I
Если все ок и дрейфа нет, не меняйте I. Вы можете поменять «ощущение» своего дрона, подняв или опустив параметр I после достижения хороших настроек PID, так как I не влияет на конечные значения P и D. Повторите шаг 6 для оси Pitch. Параметр D следует увеличивать на каждой оси ТОЛЬКО до такой степени, чтобы он помогал уменьшить отдачу после флипов и роллов (флип — переворот вбок, ролл — переворот «вверх ногами»), а также после колебаний после свободного падения, когда вы делаете газ в 0 и дрон падает, затем запускаете двигатели газом и они начинают как бы проваливаться в воздухе и в этот момент дрон начинает мотать из стороны в сторону. Когда такие проблемы пропадут благодаря увеличению параметра D, снизьте этот параметр до уровня 80-90% от этого уровня. Часто настройка Yaw не нужна, либо она будет минимальной, так как все равно может вызывать колебания, если ничего не делать. Начните с Yaw P и проверьте дрон на вибрации как в первом шаге, а также убедитесь, что нет вибраций, если вы дадите резкий и длинный газ или быстрый пролет вперед Начните увеличивать Yaw Р с шагом 5 до тех пор, пока не увидите вибрации в видео с камеры при полете вперед или полном газе. После этого немного уменьшите значение. Теперь нужно посмотреть данные в blackbox. Возможно, Yaw P будет немного колебаться, поэтому попробуйте увеличить Yaw gyro, чтобы посмотреть, действительно ли колебания доходят до гироскопа. Если Yaw gyro выглядит более менее ровным, то все в порядке. Теперь нужно настроить соотношение между P и I, то есть, будет ли квадрокоптер при резких поворотах сопротивляться или наоборот проваливаться в эти повороты. Очень низкие значения I приводят к смещению оси через некоторое время. Низкие значения I по оси также позволяют свободно менять положение, но при этом сохранять это положение. Более высокие значения по оси I будут хорошо держать позицию дрона, но могут иметь тенденцию сопротивляться движению + добавляется небольшое движение по инерции. Очень высокие значения приводят к «роботизированным» движениям дрона и создают колебания. После завершения настройки в режиме Акро, можно переходить к настройкам других режимов, например, Horizon (горизонт).
Помните, что не нужно слишком глубоко зарываться в изучение логов Blackbox для настройки идеальных PID. Если квадрокоптер летает хорошо и вас все устраивает, просто идите и летайте
Теория и практика использования ПИД-устройств
ПИД-регулятор температуры способен поддерживать заданное значение какой-то величины на протяжении определенного промежутка времени. С этой целью используется изменение напряжения и других величин, которые можно рассчитать по специальным формулам. При этом учитывается величина уставки и заданного значения, а также разница или рассогласование.
1.
2.
В идеальном варианте напряжение u задается с помощью формулы 1. В ней хорошо просматриваются коэффициенты пропорциональности ПИД-регулятора, предусмотренные для каждого компонента. На практике используется другая формула 2 с коэффициентом усиления, подходящим к любому из трех составляющих.
На практике ПИД-регулирование систем в теоретическом плане анализируются довольно редко. Это связано с недостатком информации о характеристиках регулируемого объекта, нелинейностью и нестабильностью всей системы, когда невозможно использовать дифференцирующий компонент.
Рабочий диапазон устройств, функционирующих на практике, обычно ограничивается верхним и нижним пределами. В связи с нелинейностью, каждая настройка выполняется экспериментально, при подключении объекта к системе управления.
Величина, образуемая с помощью программного алгоритма управления, имеет специфические особенности. Например, для нормальной регулировки температуры может потребоваться вместо одного сразу два прибора: один будет управлять нагревом, а другой – охлаждением. В первом случае осуществляется подача разогретого теплоносителя, а во втором – хладагента. Самым современным прибором считается цифровой ПИД-регулятор, воплотивший в своей конструкции все варианты практических регулировочных решений.
Реле-регулятор напряжения: принцип действия
Регулятор тока
Регулятор мощности
Как подключить выключатель с регулятором яркости
Регулятор скорости вентилятора
Преобразователи частоты ABB серии ACS355
Преобразователи частоты ABB серии ACS355 – оптимальный выбор по соотношению «цена-качество» для решения задач с ПИД-регулированием. Общий вид приводов ACS355 показан на рис.4.
Частотные приводы ACS355 обладают широким набором параметров и возможностей. Настроить необходимый режим работы возможно как с панели управления преобразователем, так и при помощи персонального компьютера, посредством специализированного программного обеспечения DriveWindow Light.
Рис.4. Преобразователи частоты ABB серии ACS355 с базовой панелью управления.
В данной статье, для примера, рассмотрен вариант настройки ПИД-регулятора преобразователя ACS355 при помощи панели управления.
Панель управления к частотному приводу ACS355 предлагается в двух вариантах исполнения: базовая панель и интеллектуальная панель управления (см. рис.5).
Рис.5. Варианты панелей управления к преобразователям частоты ABB серии ACS355.
Интеллектуальная панель управления частотным приводом ACS355 имеет встроенный мастер запуска (настройки) и интерактивную справку. С помощью этих инструментов настройку преобразователя частоты ACS355 на режим ПИД-регулирования можно выполнить без особых временных затрат и не пользуясь руководством по эксплуатации.
При использовании базовой панели управления встроенных удобных инструментов, указанных выше, нет.
Примечания и советы
В логах черного ящика высокие колебания P не выглядят как острые пики или большие волны. Эти колебания сначала проявляются в самом верху диапазона газа и выглядят как узкие синусоидные волны. Когда они появляются в логах, их еще не видно визуально или на слух, поэтому при начальной настройке (визуально и на слух) рекомендуется сначала достичь точки визуальных и звуковых колебаний, а затем снизить значения до 70%. К моменту, когда все колебания будут видны визуально или на слух, то в логах это тоже будет отчетливо отображаться.
Death Rolls (крен смерти)
Наиболее частой причиной, по которой квадрокоптер переворачивается и не останавливает двигатели — слишком низкое минимальное значение газа (throttle). Регулятор оборотов не может запустить двигатель после команды с низким значением газа (газ был какое-то время на 0). В журнале черного ящика, это отображается, как-будто двигатель управляется полным газом, но дрон продолжает крутиться. Первое, что нужно сделать, это увеличить настройку min_throttle (значение параметра Idle % при работе протокола DSHOT).
Вторая причина — либо плохой двигатель, либо плохой ESC, либо даже ослабленное крепление луча рамы. В этом случае, вы увидите в логах Blackbox, что двигатель как бы на полном газе, но луч рамы опускается (если включен акселерометр), что указывает на то, что двигатель не имеет тяги. Для проверки замените двигатель или регулятор оборотов.
Третья причина — неудачная комбинация ESCмотор. Некоторые регуляторы оборотов просто не могут работать с современными двигателями. Здесь поможет только замена ESC на другой.
Дополнительная информация для версии BetaFlight 3 (3.0 и 3.1)
- PID-настройки по умолчанию очень хорошо настроены и работают на большинстве квадрокоптеров и для них требуется лишь незначительная настройка.
- Параметр Р у Roll и Pitch могут быть довольно высокими без возникновения дополнительных колебаний, поэтому их можно увеличивать до тех пор, пока не пропадут эти самые колебания при их присутствии. Этот параметр можно увеличить под самый потолок, пока у вас D на минималках и вы не получите новые колебания при резком управлении стиками.
- Настройка Yaw может потребовать настройки нижнего предела yaw_accel_limit и yaw_p_limit, особенно для двигателей большой мощности и высокого рейтинга KV.
- Некоторые мощные системы и сборки не работают с PID по умолчанию и требуют настройки с нуля, как написано выше по шагам, например, система гоночных двигателей DJI Snail System:
Настройка ПИД-регулятора в преобразователях частоты
Частотные преобразователи – устройства для изменения момента и скорости вращения электродвигателей переменного тока различной конструкции. Современные ПЧ комплектуются функциями ПИ и ПИД-регуляторами. Устройства широко применяют в автоматизированных электроприводах промышленного оборудования различного назначения.
Рассмотрим настройку ПИД-регулятора на примере частотного преобразователя «Данфосс» серии VLT AutomationDrive FC 360.
Для настройки предусмотрены несколько параметров:
- 7-00. Параметр устанавливает вход для сигнала обратной связи с датчика скорости.
- 7-02. Осуществляет настройку скорости регулирования, при превышении характеристики возможны расходящиеся автоколебания.
- 7-03. Настройка интегральной составляющей, чем меньше ее величина, тем выше скорость реакции. Этим же параметром настраивается величина статической ошибки.
- 7-04. Настраивает дифференциальный коэффициент, отвечающий за регулирование скорости двигателя, пропорционально скорости изменения сигнала обратной связи с датчика. Установка нулевого значения отключает дифференцирующее звено.
- 7-05. Настройка усиления дифференцирующего звена. Регулируя параметр, добиваются приемлемой постоянной времени дифференцирования для разных скоростей изменения контролируемого параметра.
- 7-06. Настройка фильтрации нижних частот для подавления автоколебаний сигнала с датчика скорости. Улучшает характеристики регулятора в установившемся режиме.
ПИД-регулятор в ПЧ используется для поддержания постоянной частоты вращения двигателя при изменяющейся нагрузке. Функцию также можно применять для регулирования технологических параметров с обратной связью по сигналу с датчика давления, температуры, расхода и т.д.
Задача настройки
Настройка регулятора производится с одной единственной целью: подобрать его коэффициенты для данной задачи таким образом, чтобы регулятор поддерживал величину физического параметра на заданном уровне. В нашем примере физическая величина — это температура.
Допустим текущая температура в помещении 10 °С, а мы хотим, чтобы было 25°С. Мы включаем регулятор и он начинает управлять мощностью обогревателя таким образом, чтобы температура достигла требуемого уровня. Посмотрим как это может выглядеть.
На данном рисунке красным цветом показана идеальная кривая изменения температуры в помещении при работе регулятора. Физическая величина плавно, без скачков, но в тоже время достаточно быстро подходит к заданному значению. Оптимальное время, за которое температура может достигнуть заданной отметки, определить довольно сложно. Оно зависит от многих параметров: размеров комнаты, мощности обогревателя и др. В теории это время можно рассчитать, но на практике чаще всего это определяется экспериментально.
Чёрным цветом показан график изменения температуры в том случае, если коэффициенты подобраны совсем плохо. Система теряет устойчивость. Регулятор при этом идёт «в разнос» и температура «уходит» от заданного значения.
Рассмотрим более благоприятные случаи.
На этом рисунке показаны графики, далёкие от идеального. В первом случае наблюдается сильное перерегулирование: температура слишком долго «скачет» относительно уставки, прежде чем достичь её. Во втором случае регулирование происходит плавно, но слишком медленно.
А вот и приемлемые кривые:
Данные кривые тоже не идеальны, но могут быть сочтены за удовлетворительные.
В процессе настройки регулятора, пользователю необходимо стремиться получить кривую, близкую к идеальной. Однако, в реальных условиях сделать это не так-то просто — приходится долго и мучительно подбирать коэффициенты. Поэтому зачастую останавливаются на «приемлемой» кривой регулирования. Например, в нашем примере нас могли бы устроить коэффициенты регулятора, при которых заданная температура достигалась бы за 15-20 минут с максимальным перерегулированием (максимальными «скачками» температуры) 2 °С. А вот время достижение уставки более часа и максимальные «скачки» температуры 5 °С — нас бы не устроили.
Далее поговорим о том, как подобрать коэффициенты для достижения оптимального регулирования. Рекомендуется настраивать коэффициенты в том же порядке, в котором это описано.
История и приложения
Первые ПИД-регуляторы начались с разработки ограничителей скорости. Позже ПИД-регуляторы использовались для автоматического управления судами. Один из первых примеров ПИД-регулятора был разработан Элмером Сперри в 1911 году, а первый теоретический анализ ПИД-регулятора был опубликован русским американским инженером Николасом Минорским в 1922 году. состояния и проводил его анализы, наблюдая за рулевым, и, таким образом, отметив, что рулевой управлял кораблем не только по текущей ошибке, но также на основе прошлых ошибок и текущей скорости изменения, что побудило Минорского разработать для этого математическую модель. Его целью была стабильность, а не общий контроль, что значительно упрощало задачу. В то время как пропорциональное управление обеспечивает устойчивость к небольшим возмущениям, его недостаточно для борьбы с постоянными возмущениями, такими как сильный шторм, который требует интегрального члена. Наконец, для улучшения контроля был добавлен производный термин.
Испытания контроллера проводились на USS New Mexico (BB-40) , где он отвечал за управление угловой скоростью руля направления. ПИ-регулятор продолжал вращаться с погрешностью ±2°. Добавление элемента D привело к ошибке ± 1/6 °, что намного лучше, чем у рулевого.
В конечном итоге из-за сопротивления личного состава ВМФ не принял эту систему на вооружение. Аналогичная работа была проведена и опубликована в 1930-х годах.
Благодаря большей точности, чем пропорциональные , пропорционально-дифференциальные и пропорционально-интегральные регуляторы, он используется в более важных приложениях, таких как управление давлением , расходом , силой , скоростью , во многих химических приложениях и другими переменными . Кроме того, он используется в автомобильных регуляторах скорости (круиз-контроль или круиз — контроль ) и контроле остаточного озона в контактных баках.
Очень простой пример, иллюстрирующий основные функции PID, — это когда человек входит в душ. Сначала вы включаете кран с горячей водой, чтобы поднять температуру до приемлемого значения (также называемого заданным значением ). Проблема в том, что может наступить момент, когда температура воды превысит это значение, и человеку придется приоткрыть кран холодной воды, чтобы нейтрализовать жару и сохранить равновесие. Холодная вода регулируется до тех пор, пока не достигнет желаемой температуры. В этом случае человек — это тот, кто осуществляет контроль над контуром управления и тот, кто принимает решения об открытии или закрытии любого из ключей; Но разве не было бы идеально, если бы вместо нас решения принимала машина и поддерживала нужную нам температуру?
По этой причине были изобретены ПИД-регуляторы: чтобы упростить задачи операторов и лучше контролировать операции. Некоторые из наиболее распространенных приложений:
- Температурные контуры (кондиционеры, обогреватели, холодильники и т. д.)
- Контуры уровня (уровень в резервуарах с жидкостью, таких как вода, молочные продукты, смеси, сырая нефть и т. д.)
- Напорные контуры (для поддержания заданного давления в резервуарах, трубах, сосудах и т. д.)
- Петли потока (держитесь в пределах линии потока или трубы)
Общие сведения о ПИД-регуляторе
Аббревиатура ПИД происходит от английского понятия PID, и расшифровывается как Proportional, Integral, Derivative. На русском языке это сокращение включает в себя три компонента или составляющие: пропорциональную, интегрирующую, дифференцирующую.
Принцип работы ПИД-регулятора наилучшим образом подходит для контуров управления, схема которых оборудована звеньями обратной связи. В первую очередь, это различные автоматические системы где формируются сигналы управления, обеспечивающие высокое качество и точность переходных процессов.
В состав управляющего сигнала ПИД-регулятора входят три основных компонента, складывающиеся между собой. Каждый из них находится в пропорции с определенной величиной:
- Первый – с сигналом рассогласования.
- Второй – с интегралом сигнала рассогласования.
- Третий – с производной сигнала рассогласования.
Если какой-либо компонент выпадет из этого процесса, то данный регулятор уже не будет представлять собой ПИД. В этом случае его схема будет просто пропорциональной, пропорционально-дифференцирующей, пропорционально-интегрирующей.
Поскольку эти приборы чаще всего используются для поддержания заданного уровня температуры, в том числе для чайников, целесообразно ПИД-регулятор рассматривать на практических примерах именно в этом ракурсе.
В самом процессе будет участвовать объект, на котором должна поддерживаться заданная температура. Все регулировки осуществляются извне. Другой составляющей будет само устройство с микроконтроллером, которое непосредственно решает имеющуюся задачу. Через измеритель на контроллер поступают данные об уровне температуры на данный момент. Мощность нагревателя отдельно контролируется специальным устройством. Для того чтобы установить требуемое значение параметров температуры, микроконтроллер нужно подключить к компьютеру.
Таким образом, исходными данными служат следующие температурные показатели: текущее значение и уровень, до которого должен нагреться или остыть рассматриваемый объект. На выходе должна получиться величина мощности, передаваемой к нагревательному элементу. Именно она обеспечивает необходимый температурный режим, позволяющий выполнить поставленную задачу. Для ее решения будут задействованы все три компонента, рассмотренные выше.
Настройка ПИД-параметров
Целью настройки параметров ПИД-регулятора является обеспечение того, чтобы контур управления корректировал влияние возмущений эффективно и за минимальное время; должен быть достигнут минимальный интеграл ошибки. Если параметры ПИД-регулятора (коэффициент усиления пропорционального, интегрального и производного) выбраны неправильно, управляемый процесс может быть неустойчивым, например, его выходной сигнал изменяется с колебаниями или без них и ограничивается только насыщением . или механический разрыв. Отрегулируйте контур управленияэто означает настройку параметров системы управления на оптимальные значения для желаемой реакции системы управления. Оптимальное поведение перед изменением процесса или изменением «уставки» варьируется в зависимости от приложения. Как правило, перед реакцией контроллера требуется стабильность, и она не должна колебаться перед любой комбинацией условий процесса и изменением «уставок». Некоторые процессы имеют определенную степень нелинейности, а некоторые параметры, которые хорошо работают в условиях полной нагрузки, плохо работают, когда процесс находится в состоянии «без нагрузки». Существует несколько способов настройки ПИД-контура. Наиболее эффективный метод обычно требует разработки модели процесса в той или иной форме, а затем выбора P, I и D на основе параметров динамической модели.Ручные методы настройки могут быть очень неэффективными. Выбор метода будет зависеть от того, можно ли «отключить» шлейф для регулировки, и от времени отклика системы. Если систему можно отключить, лучшим методом настройки часто является настройка входа, измерение выхода как функции времени и использование этого отклика для определения параметров управления. Теперь опишем, как выполнить ручную настройку.Теперь опишем, как выполнить ручную настройку.Теперь опишем, как выполнить ручную настройку.
ручная регулировка
Если система должна оставаться «в сети» , один из методов настройки заключается в том, чтобы сначала установить значения I и D на ноль. Затем увеличивайте P до тех пор, пока выход цикла не начнет колебаться. Затем установите P примерно на половину ранее установленного значения. Затем увеличивайте I до тех пор, пока процесс не уложится в требуемое время (хотя слишком большое увеличение I может вызвать нестабильность). Наконец, увеличивайте D, если это необходимо, пока контур не станет достаточно быстрым, чтобы достичь исходного значения после внезапного изменения нагрузки.
Очень быстрый контур ПИД-регулятора быстро достигает заданного значения , а не очень быстрый контур ПИД-регулирования достигает заданного значения не так быстро. Некоторые системы не способны воспринять этот внезапный триггер; В этих случаях требуется еще один контур с P менее половины P предыдущей системы управления.
Метод Циглера-Николса
Метод Циглера-Николса позволяет провести испытание управляемой системы, и на основе этого испытания рассчитываются необходимые параметры ПИД-регулятора для достижения хорошего быстрого отклика с небольшим перерегулированием.
Интегральная: «Учтём предыдущий опыт»
Интегральная составляющая необходима, чтобы учитывать предыдущий опыт работы регулятора и делать управление всё точнее и точнее со временем. Как известно, интеграл — это сумма. Регулятор суммирует все предыдущие значения ошибки регулирования и делает на них поправку. Как только система выйдет на заданный режим (например, достигнет заданной температуры) ошибка регулирования будет близка к нулю и интегральная часть со временем будет всё меньше влиять на работу регулятора. Говоря простым языком, интегральная составляющая стремиться исправить ошибки регулирования за предыдущий период.
ПИД регулятор
Пусть наш прибор может регулировать
мощность паяльника (например с помощью
ШИМ модуляции) дискретно (с шагом в 1) в
диапазоне от 0 до 10 единиц. 0 — выключен,
10 включён на полную мощность. Теперь,
вместо обычного включения паяльника
мы можем включить его с некоторой
мощностью. Вопрос какая мощность нужна?
ПИД регулятор как раз и служит для того,
чтобы ответить на этот вопрос. Эта
программа автоматически рассчитает
нужную мощность в каждый момент времени.
Как расшифровывается аббревиатура ПИД:
-
П — пропорциональный
-
И — интегральный
-
Д — дифференциальный
Мощность которую нужно приложить к
паяльнику в текущий момент времени
складывается из трёх вышеперечисленных
компонент. ПИД регулятор находит её
автоматически. Разберём что это за
компоненты, и как работает алгоритм.
Напомним, что в цифровой электронике
нет непрерывных процессов, любая
программа выполняется не мгновенно, а
за какое-то количество тактов. Датчики
выдают данные тоже с некоторой
периодичностью. И ПИД регулятор тоже
будет работать дискретно
Будем считать
(и это очень важно), что программа
регулятор вызывается строго через
одинаковые промежутки времени (например,
каждые 300мс) и вычисляет нужное управляющее
воздействие
ТРМ210: Функциональная схема прибора
Краткий экскурс в теорию закончен, вернёмся к практике и рассмотрим прибор ТРМ210, реализующий данный алгоритм.
Вот его функциональная схема:
Информация с датчика преобразуется прибором с помощью шкалы масштабирования, проходит фильтрацию и коррекцию. Это необходимо, чтоб ПИД-алгоритм получил измеренное значение в удобном и понятном для него виде.
Значение измеренной величины отображается на дисплее прибора.
Управляющее воздействие регулятора может быть импульсным или аналоговым. В первом случае управляющее воздействие регулятора заключается в изменении ширины генерируемых на выходе импульсов. Во втором случае регулятор выдаёт сигнал унифицированного напряжения в диапазоне 0…10 В или тока в диапазоне 4…20 мА. С помощью этих сигналов можно управлять практически любым устройством.
В ТРМ210 предусмотрен блок сигнализации, который сообщает о выходе физической величины за заданные пределы, замыкая дискретный выход, который, например, может «зажигать» лампу «Авария».
Также в приборе имеется блок регистратора, который может передавать измеренное значение физической величины любому другому прибору или устройству с помощью токового сигнала 4…20 мА.
В дополнение ко всему выше перечисленному регулятор имеет «на борту» интерфейс RS-485, который позволяет читать с прибора значения измеряемой величины, выходной мощности регулятора и любых конфигурируемых параметров. Это может пригодиться, если нужно передавать информацию о работе прибора в диспетчерский пункт.
Три коэффициента ПИД регулятора и принцип работы
Работа ПИД-регулятора заключается в подаче выходного сигнала о силе мощности, необходимой для поддержания регулируемого параметра на заданном уровне. Для вычисления показателя используют сложную математическую формулу, в составе которой есть 3 коэффициента — пропорциональный, интегральный, дифференциальный.
Возьмем в качестве объекта регулирования ёмкость с водой, в которой необходимо поддерживать температуру на заданном уровне с помощью регулирования степени открытия клапана с паром.
Пропорциональная составляющая появляется в момент рассогласования с вводными данными. Простыми словами это звучит так — берется разница между фактической температурой и желаемой, умножается на настраиваемый коэффициент и получается выходной сигнал, который должен подаваться на клапан. Т.е. как только градусы упали, запускается процесс нагрева, поднялись выше желаемой отметки — происходит выключение или даже охлаждение.
Дальше вступает интегральная составляющая, которая предназначена для того, чтобы компенсировать воздействие окружающей среды или других возмущающих воздействий на поддержание нашей температуры на заданном уровне. Поскольку всегда присутствуют дополнительные факторы, влияющие на управляемые приборы, в момент поступления данных для вычисления пропорциональной составляющей, цифра уже меняется. И чем больше внешнее воздействие, тем сильнее происходят колебания показателя. Происходят скачки подаваемой мощности.
Интегральная составляющая пытается на основе прошлых значений температуры, вернуть её значение, если оно поменялось. Подробнее процесс описан в видео ниже.
А дальше выходной сигнал регулятора, согласно коэффициенту, подается для повышения или понижения температуры. Со временем подбирается та величина, которая компенсирует внешние факторы, и скачки исчезают.
Интеграл используется для исключения ошибок путем расчета статической погрешности. Главное в этом процессе — подобрать правильный коэффициент, иначе ошибка (рассогласование) будет влиять и на интегральную составляющую.
Смотрите это видео на YouTube
Третий компонент ПИД — дифференцирующий. Он предназначен для компенсации влияния задержек, возникающих между воздействием на систему и обратной реакцией. Пропорциональный регулятор подает мощность до тех пор, пока температура не достигнет нужной отметки, но при прохождении информации к прибору, особенно при больших значениях, ошибки всегда возникают. Это может привести к перегреву. Дифференциал прогнозирует отклонения, вызванные задержками или воздействием внешней среды, и снижает подаваемую мощность заранее.