В чем разница между биполярным и полевым транзистором

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора — биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Конструкция и принцип работы

Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.

Фото — мпринципиальные схемы включения

Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.

Фото — конструкция

Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).

Фото — виды биполярных триодов

По виду подключения и уровню пропускаемого питания, они делятся на:

  1. Высокочастотные;
  2. Низкочастотные.

По мощности на:

  1. Маломощные;
  2. Средней мощности;
  3. Силовые (для управления необходим транзисторный драйвер).

Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.

Фото — пример

Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.

Существуют следующие ключевые виды работы:

  1. Активный режим;
  2. Отсечка;
  3. Двойной или насыщения;
  4. Инверсионный.

Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.

Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.

Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.

Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.

Видео: как работает биполярные транзисторы

Принцип работы транзистора

В самом простом случае работу транзистора можно описать следующим образом. Транзистор можно представить в виде управляемого сопротивления, то есть выводы сопротивления это коллектор и эммитер, а управлять этим сопротивлением можно с помощью базы, подавая на неё ток. И в зависимости от величины тока сопротивление участка коллектор – эммитер будет менять своё значение. В действительности всё немного сложнее здесь мы не учитываем частотные свойства, но в общем случае всё выше описанное верно.

Давайте разберёмся подробнее в работе транзистора. Вначале необходимо сказать о полярности включения, то есть куда подключить «плюс», а куда – «минус». На принципиальных схемах обозначение транзистора имеет следующий вид.



Обозначение на схеме биполярного транзистора и их диодное представление.

На обозначении направление стрелки указывает на направление протекания тока. В качестве примера возьмём транзистор структуры p-n-p. В данном случае ток протекает от эммитера к коллектору, через базовую зону транзистора. Используя схему транзистора как объединение двух диодов можно видеть, что диод с выходом на коллектор включён в обратном направлении и его сопротивление очень велико. А диод с выходом на эммитер включен в прямом направлении и его сопротивление небольшое, и через него идет ток. В случае если бы это были два диода соединенные выводами, то на этом можно было бы и закончить разговор, но так как это транзистор и у него имеется общая зона двух p-n-переходов, то происходит такой процесс как диффузия. Диффузия, в общих чертах, это процесс распространения одного вещества в другом.

Так вот за счёт диффузии свободные положительные заряды – «дырки» быстро распространяются по всей базовой зоне, а следовательно попадают в зону коллекторного p-n-перехода, а далее «минус» на коллекторе притягивает «дырки» и в результате чего начинает течь электрический ток. В случае же если мы начнём подавать ток на базу, то следовательно будет изменяться величина p-n-переходов: эммитерного и коллекторного.

Принцип действия

Анализатор транзисторов.

МОП и биполярные транзисторы работают по-разному:

Биполярный транзистор
В усилителе тока в пространство база / эмиттер вводится ток, чтобы создать ток, умноженный на коэффициент усиления транзистора между эмиттером и коллектором. Эти биполярные транзисторы NPN (отрицательный-положительный-отрицательный) , которые оставляют циркулирующий ток базы (+) к передатчику (-), быстрее и имеют более высокого выдерживаемое напряжение , чем основание PNP транзисторы (-) передатчик (+), но могут быть производимые производителями с дополнительными характеристиками для приложений, требующих этого.
Полевой транзистор
Его управляющий орган — ворота . Для этого требуется только напряжение (или потенциал) между затвором и истоком, чтобы управлять током между истоком и стоком. В статическом режиме ток затвора равен нулю (или незначителен), поскольку затвор ведет себя по отношению к цепи управления как конденсатор малой емкости. Есть несколько типов полевого  транзистора: истощение , обогащение (на сегодняшний день самая многочисленная) и ответвительные (JFET) транзисторов . В каждом семействе можно использовать канал либо N-типа, либо P-типа, что, таким образом, составляет в общей сложности шесть различных типов. — Для истощающих транзисторов, а также для полевых транзисторов, канал сток-исток является проводящим, если потенциал затвора равен нулю. Чтобы заблокировать его, этот потенциал нужно сделать отрицательным (для каналов N) или положительным (для каналов P). — И наоборот, обогащающие транзисторы блокируются, когда затвор имеет нулевой потенциал. Если на затвор транзистора N смещается положительное напряжение, а на затвор транзистора P — отрицательное напряжение, пространство исток-сток транзистора становится проводящим.

Каждый из этих транзисторов характеризуется пороговым напряжением, соответствующим напряжению на затворе, которое обеспечивает переход между заблокированным поведением транзистора и его проводящим поведением. В отличие от биполярных транзисторов, пороговое напряжение которых зависит только от используемого полупроводника (кремний, германий или As-Ga), пороговое напряжение полевых транзисторов сильно зависит от технологии и может значительно меняться даже во времени внутри одной партии. N-канальный обедненный полевой транзистор — это полупроводник, характеристики которого больше всего напоминают старые электронные лампы (триоды). При одинаковой мощности N транзисторов меньше P. При одинаковой геометрии N транзисторов также быстрее, чем P. Действительно, большинство носителей в N-канале — электроны , которые движутся лучше, чем дырки , преимущественно в P-канале. Таким образом, канал N больше, чем канал P того же размера.

В большинстве цифровых интегральных схем (в частности, микропроцессоров ) используется технология CMOS, которая позволяет интегрировать в большом масштабе (несколько миллионов) дополнительные полевые (обогащающие) транзисторы (то есть можно найти N и P). Для той же функции интеграция биполярных транзисторов потребовала бы гораздо больше тока. Действительно, схема CMOS потребляет ток только во время переключений. Потребление CMOS-затвора — это только электрический заряд, необходимый для зарядки его выходной емкости . Поэтому их рассеяние почти равно нулю при умеренной тактовой частоте; это позволяет разрабатывать схемы элементов или батарей (телефоны или ноутбуки, камеры и т. д.).

Другие транзисторы
    • IGBT ( биполярный транзистор с изолированным затвором ): гибрид, который имеет характеристики полевого транзистора на входе и характеристики биполярного транзистора на выходе. Используется только в силовой электронике .
    • Однопереходный транзистор: этот транзистор используется из-за его характеристик отрицательного динамического сопротивления, что позволяет просто реализовать генератор. В настоящее время больше не используется.
    • Фототранзистор: это биполярный транзистор, переход база-коллектор которого чувствителен к свету. По сравнению с фотодиодом , он более чувствителен, поскольку имеет эффект усиления, свойственный транзистору.
    • Оптоизолятор  : фототранзистор устанавливаются в том же блоке, в светоизлучающем диоде . Это свет передает сигналы между фототранзистором и светодиодом. Очень высокая изоляционная мощность (около 5  кВ ) делает его идеальным компонентом для гальванической развязки цепи управления от силовой цепи. Также существуют оптоизоляторы, использующие другие выходные компоненты, такие как тиристор , симистор .

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторыРис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор. Полевые транзисторы потребляют очень мало энергии

Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Это интересно: Вихревые токи Фуко — причины возникновения и применение

Полевые транзисторы с управляющим p-n переходом

Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.

При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.

Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.

Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Полевой транзистор характеризуется следующей ВАХ:

Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи| < Uзап ток стока Iс возрастает с увеличением Uси. При повышении напряжения сток — исток до Uси = Uзап — |Uзи| происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс. Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.

На ВАХ Iс = f(Uзи) показано напряжение Uзап. Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8…10-9 А, поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010…1013 Ом. Кроме того, они отличаются малыми шумами и технологичностью изготовления.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: