Электроснабжение электрифицированных железных дорог — релейная защита

3.2.20

Оценка чувствительности основных типов релейных
защит должна производиться при помощи коэффициента чувствительности,
определяемого:

для защит, реагирующих на величины, возрастающие в условиях
повреждений, — как отношение расчетных значений этих величин (например, тока,
или напряжения) при металлическом КЗ в пределах защищаемой зоны к параметрам
срабатывания защит;

для защит, реагирующих на величины, уменьшающиеся в
условиях повреждений, — как отношение параметров срабатывания к расчетным
значениям этих величин (например, напряжения или сопротивления) при
металлическом КЗ в пределах защищаемой зоны.

Расчетные значения величин должны устанавливаться, исходя
из наиболее неблагоприятных видов повреждения, но для реально возможного режима
работы электрической системы.

Источники оперативного тока на ПС 35-110 кВ

Современные цепи управления коммутационных аппаратов, РЗА и сигнализации запитаны от источников оперативного тока (далее — ОТ).

Основное требование, предъявляемое к источникам ОТ – это постоянная их готовность к действию при любых условиях, включая и моменты КЗ, при которых напряжение на секциях шин ПС 35-110 кВ может снизиться до 0.

Переменный оперативный ток

. Сегодня используется два основных вида:

— переменный ОТ, когда ПС выполнена по упрощённой схеме; — постоянный ОТ, применяемый на ПС, имеющих стационарные АКБ.

Как источник переменного ОТ можно использовать трансформаторы тока (ТТ) и напряжения (ТН), а также трансформаторы собственных нужд ТСН: ТТ способны обеспечить надежное питание различных цепей при коротких замыканиях, когда на их зажимах резко возрастают напряжение и ток.

Однако, для оперативного управления в нормальных рабочих режимах ТТ не применимы, поскольку от них невозможно получить необходимый для подобных случаев уровень мощности.

ТСН, в отличие от ТТ, нельзя использовать для питания оперативных цепей во время КЗ, ибо происходит снижение напряжения, однако они прекрасно подходят для управления коммутационными аппаратами в режимах, близких к нормальным.

То есть, каждый из источников переменного тока обладает ограниченной областью применения с возможностью использования только в качестве источника, так называемого, индивидуального децентрализованного питания.

Наилучшим выходом, на сегодняшний день, считаются варианты универсальных источников комбинированного одновременного питания от ТТ и ТН. Речь идёт о выпускаемых ныне блоках питания БПН, БПТ, подключаемых к ТН и ТТ, соответственно.

Кроме того, на ПС широкое применение нашли и конденсаторные установки, которые дают возможность по необходимости использовать ранее запасенную в них электроэнергию для питания устройств.

Так, сегодня потребителям доступны целые комплекты конденсаторов с общей ёмкостью от 40 до 200 мкФ. Необходимый заряд конденсаторы получают от ТН и ТСН при нормальном режиме работы ПС 35-110 кВ.

При этом, продолжительность заряда напрямую зависит от схемы зарядного устройства, их ёмкости.

В целях обеспечения надежности работы всей цепочки следует конденсаторы всегда держать в заряженном состоянии, поскольку без постоянной подзарядки они способны уже спустя 2 минуты стать абсолютно не пригодными для выдачи необходимой мощности.

В настоящее время отечественная промышленность выпускает специальные комбинированные устройства БПЗ, которые одновременно являются как зарядными устройствами, так и блоком питания нагрузки.

Для питания-же электромагнитов включения, установленных в приводах выключателей со значительным потреблением энергии, применяют УКП (комплектные устройства питания).

Эти устройства подключаются к ТСН, преобразуют переменный ток в постоянный ток. Основное место их применения – это ПС, где совсем нет АКБ или же их мощности недостаточно.

Постоянный оперативный ток

. Основной источник постоянного ОТ — это свинцово-кислотные АКБ с зарядными устройствами, работающими на напряжении 110, 220 В. Такие устройства способны обеспечить питание следующих оперативных цепей:

— сигнализации, РЗА; — электромагнитов включения (отключения).

К АКБ можно также подключить устройства связи, двигатели резервных маслонасосов синхронных компенсаторов, цепи аварийного освещения. На больших подстанциях, как правило, устанавливается 2 и более АКБ, работающих независимо друг от друга.

Автоматическое повторное включение.

Название: Автоматическое повторное включение.

Издательство: Энергоатомиздат

Год издания: 1986

Формат: djvu

Размер: 832 Kb

Библиотека электромонтёра.

Рассматриваются назначение, принципы действия и выполнения, а также методика расчета уставок устройств автоматического повторного включения (АПВ) в энергосистемах. Приведены типовые схемы АПВ на постоянном оперативном токе и АПВ в сетях 6 — 220 кВ на переменном оперативном токе. Даны рекомендации по наладке устройств АПВ. Для электромонтёров и мастеров, занятых наладкой и эксплуатацией релейной защиты и электроавтоматики.

Источники оперативного тока подстанций

Для питания цепей управления, автоматики, сигнализации и защиты применяется оперативный ток. Существует три основных вида оперативного тока: переменный, постоянный и выпрямленный. Источниками переменного оперативного тока являются измерительные трансформаторы тока и напряжения, а также трансформаторы собственных нужд (ТСН). Источниками постоянного оперативного тока служат аккумуляторные батареи. В качестве источников выпрямленного оперативного тока используются выпрямительные установки и специальные блоки питания, которые получают переменный ток от измерительных трансформаторов тока и напряжения и ТСН. Кроме того, в качестве источников оперативного тока используются предварительно заряженные конденсаторы. Источники оперативного тока должны быть в постоянной готовности к действию в любых режимах работы электроустановки, в том числе и в аварийном. Постоянный оперативный ток применяется обычно на электростанциях, тяговых подстанциях, крупных трансформаторных подстанциях с первичным напряжением 110 кВ и выше. Переменный ток используется на трансформаторных подстанциях напряжением 35 кВ и ниже, на небольших подстанциях 110 кВ без выключателей на стороне высшего напряжения, имеющих на стороне среднего и низшего напряжения выключатели с пружинными приводами. Выпрямленный ток используется на подстанциях напряжением 35 кВ и ниже с выключателями, укомплектованными электромагнитными приводами, а также на подстанциях напряжением 110-220 кВ с числом выключателей на стороне высшего напряжения не более двух с электромагнитным приводом, либо не более трех с пружинными или пневматическими приводами. В ряде случаев применяют схемы питания оперативных цепей с использованием различных источников тока. Так, например, при малой мощности аккумуляторной батареи от нее получают питание цепи управления и защиты, а включающие электромагниты — от выпрямительных устройств. Наиболее надежными источниками переменного оперативного тока для работы защит являются трансформаторы тока, обеспечивающие их четкую работу при перегрузках и коротких замыканиях. Трансформаторы напряжения нельзя использовать для питания оперативных цепей отключения, так как при близких трехфазных КЗ напряжение на шинах электроустановки может понизиться настолько, что не сработает отключающая катушка привода выключателя. По этой причине трансформаторы напряжения используются для питания тех защит, которые действуют при режимах, не связанных со значительным понижением напряжения на шинах. От ТСН получают питание устройства и цепи, для которых не требуется особая стабильность подводимого напряжения и допускаются временные перерывы в подаче питания (например, электродвигатели пружинных приводов). Источники выпрямленного тока можно разделить на три основные группы: источники для заряда и подзаряда аккумуляторных батарей; источники оперативного тока для питания цепей управления, защиты, автоматики и сигнализации; источники питания включающих электромагнитов приводов выключателей. К источникам выпрямленного тока следует также отнести предварительно заряженные от выпрямителей конденсаторы. Блоки питания, находящиеся в эксплуатации, можно разделить на четыре группы: токовые (БПТ); напряжения (БПН); зарядные устройства (УЗ); комбинированные, совмещающие в себе блоки питания и зарядные устройства. На рис. 1, а представлена принципиальная схема питания оперативных цепей от блоков БПТ и БПН. Блок БПТ состоит из промежуточного трансформатора TLy выпрямительного моста К5, вспомогательных элементов — дросселя L и конденсатора С, обеспечивающих стабилизацию выходного напряжения. Питание БПТ получает от трансформатора тока. Трансформатор TL

Литература

  • Чернобровов Н. В., Семенов В. А. «Релейная защита энергетических систем»: Учеб. пособие для техникумов. — М.: Энергоатомиздат, 1998. −800с.: ил.
  • Павлов, Г. М. «Автоматизация энергетических систем» : Учеб.пособие / Г. М. Павлов .— Ленинград : Изд-во Ленингр. ун-та, 1977 .— 237 с. : ил .— Библиогр.: с.233-234.
  • Булычев, А. В. Релейная защита электроэнергетических систем: учебное пособие / А. В. Булычев, В. К. Ванин, А. А. Наволочный, М. Г. Попов. — СПб.: Изд-во Политехн. ун-та, 2008. — 211 с.
  • РД 153-34.0-04.418-98 «Типовое положение о службах релейной защиты и электроавтоматики».
  • Шнеерсон Э. М. «Цифровая релейная защита» — М.: Энергоатомиздат, 2007. −549с.: ил.

Еще виды РЗА

Её техника используется для контроля работоспособности всех технологических систем, для охлаждения которых используются масла, в частности, трансформаторы. Поломка в них вызывает высокую температуру с выделением в атмосферу газов из состава масел. При этом охлаждающие средства теряют стандартный химический состав и снижают  диэлектрические свойства.

На такие технологические сбои мгновенно реагирует механическая релейная защита. Она учитывает и изменения в химии газов, и продукты распада масел.

Можно отметить, что РЗА работает на подобных принципах и при появлении таких  повышающих факторов:

  • термо;
  • давления той или иной среды или   предпосылок от механики.

И это еще не все основные классификации релейных защит – поскольку данный формат статьи не позволяет нам более широко раскрыть РЗА.

Общее описание процесса

Как говорилось ранее, начальным объектом, откуда начинается распределение электроэнергии, на сегодняшний день является электрическая станция.

В наше время существует три основных типа станции, которые могут снабжать потребителей электричеством. Это может быть тепловая электрическая станция (ТЭС), гидроэлектростанция (ГЭС) и атомная электрическая станция (АЭС). Помимо этих основных типов, есть также солнечные или ветровые станции, однако они используются для более локальных целей.

Эти три типа станция является и источником и первой точкой распределения электроэнергии.

Для того чтобы осуществить такой процесс, как передача электрической энергии, необходимо значительно увеличить напряжение. Чем дальше находится потребитель, тем выше должно быть напряжение. Так, увеличение может доходить до 1150 кВ.

Повышение напряжения необходимо для того, чтобы снизилась сила тока. В таком случае также падает и сопротивление в проводах. Такой эффект позволяет передавать ток с наименьшими потерями мощности.

Для того чтобы повышать напряжение до нужного значения, каждая станция имеет повышающий трансформатор. После прохождения участка с трансформатором, электрический ток при помощи ЛЭП передается на ЦРП. ЦРП – это центральная распределительная станция, где осуществляется непосредственное распределение электроэнергии.

Такие объекты, как ЦРП, находятся уже в непосредственной близости от городов, сел и т.

д. Здесь происходит не только распределение, но и понижение напряжения до 220 или же 110 кВ. После этого электроэнергияпередается на подстанции, расположенные уже в черте города.При прохождении таких небольших подстанций напряжение понижается еще раз, но уже до 6-10 кВ.

После этого осуществляется передача и распределение электроэнергии по трансформаторным пунктам, расположенным по разным участкам города.Здесь также стоит отметить, что передача энергии в черте города к ТП осуществляется уже не при помощи ЛЭП, а при помощи проложенных подземных кабелей. Это гораздо целесообразнее, чем применение ЛЭП. Трансформаторный пункт – это последний объект, на котором происходит распределение и передача электроэнергии, а также ее понижение в последний раз.На таких участках напряжение снижается до уже привычных 0,4 кВ, то есть 380 В.

Далее оно передается в частные, многоэтажные дома, гаражные кооперативы и т. д.Если кратко рассмотреть путь передачи, то он примерно следующий: источник энергии (электростанция на 10 кВ) – трансформатор повышающего типа до 110-1150 кВ – ЛЭП – подстанция с трансформатором понижающего типа – трансформаторный пункт с понижением напряжения до 10-0,4 кВ – потребители (частный сектор, жилые дома и т. д.).

Схемы распределения для первой категории приемников

Что касается распределения энергии для питания приемников первой категории, то в данном случае необходимо подключение от двух независимых центров питания одновременно. Кроме того, в таких схемах часто используется не один распределительный пункт, а два, а также всегда предусмотрена система автоматического включения резервного питания.

Для электрических приемников, которые принадлежат к первой категории, автоматика переключения на резервное питание устанавливается на вводно-распределительных устройствах. При такой системе подключения распределение электрического тока осуществляется при помощи двух силовых линий, каждая из которых характеризуется напряжением до 1 кВ, а также подключаются к независимым трансформаторам.

ГКД 34. 35. 604-96

Разработано: «ДонОРГРЭС»

Название: Техническое обслуживание устройств релейной защиты, противоаварийной автоматики, электроавтоматики, дистанционного управления и сигнализации электростанций и подстанций 110 кВ — 750 кB. Правила

Год издания: 1996

Формат: doc

Размер: 107 Kb

Настоящие Правила определяют виды технического обслуживания устройств РЗА и ПА, дистанционного управления и сигнализации (далее — устройств РЗА и ПА), программы и периодичность их проведения, а также объемы технического обслуживания типовых и не типо-вых (состоящих из отдельных устройств и реле) панелей защит и автоматики, релейной аппа-ратуры, высокочастотных каналов релейной защиты и ПА. трансформаторов тока и напряже-ния, и других узлов устройств РЗА и ПА.

Типы систем оперативного тока

Различают следующие системы оперативного тока на подстанциях:

1) постоянный оперативный ток — в качестве источника питания применяется аккумуляторная батарея (АБ) с зарядными устройствами (ЗУ);

2) переменный оперативный ток — в качестве источников питания используются измерительные трансформаторы тока, трансформаторы напряжения, трансформаторы собственных нужд, предварительно заряженные конденсаторы;

3) выпрямленный оперативный ток – источники — блоки питания и выпрямительные силовые устройства, предварительно заряженные конденсаторы;

4) смешанная система оперативного тока –используется комбинация вышеперечисленных систем.

Чувствительность

Релейная защита должна реагировать только на повреждение защищаемого элемента энергосистемы, а в случаях когда это предусмотрено, то и на соседних элементах.

Чувствительность устройства РЗ — способность устройства РЗ реагировать на возникновение КЗ или ненормального режима работы оборудования.

Устройство РЗ должно срабатывать:

  1. При повреждении в любой точке защищаемого оборудования.
  2. Во всех режимах работы защищаемого оборудования и энергосистемы.
  3. При всех видах повреждений защищаемого оборудования, при которых данное устройство РЗ должно работать.

Имеются устройства РЗ, предназначенные для работы при всех видах повреждений, и имеются устройства РЗ, предназначенные для работы только при определенных видах повреждений (например, защита от трёхфазных КЗ, защита от междуфазных КЗ, защита от несимметричных КЗ, защита от КЗ на землю).

Дифзащита трансформаторов применяется для предотвращения аварийных и ненормальных режимов работы при возникновении короткого замыкания между фазами, межвитковых КЗ и замыкания одной или более фаз на землю.

Дифзащита применяется как основный вид автоматического отключения для мощных трансформаторов и для трансформаторов меньшей мощности, в случае если другие виды защиты не обеспечивают требуемого быстродействия.

Принцип работы дифференциальной защиты заключается в сравнении токов входящих и выходящих из трансформатора,и отключении трансформатора при неравенстве токов.

Конструктивно дифзащита включает в себя (Рис. 1) два трансформатора тока ТТ1 и ТТ2 включенных по высокому и низкому напряжению и реле автоматики А. Коэффициент преобразования измерительных трансформаторов подобран так, что при возникновении короткого замыкания вне защищаемого участка (Рис.1 слева), результирующий ток проходящий через реле был равный нулю.

Рис. 1

При возникновении короткого замыкания возникает асимметрия втекающих и вытекающих токов (Рис. 1 справа). Через реле протекает ток, включающий схему защитного отключения. Высокая избирательность дифференциальной системы не требует реле времени, т.к. защита включается в идеальном случае только при внутренних КЗ.

В реальных условиях требуется настройка дифзащиты трансформатора для исключения ложного срабатывания.

При подаче напряжения на входные обмотки трансформатора возникает ток подмагничивания, вызывающий неравенство входных и выходных токов. Ток подмагничивания имеет вид затухающих колебаний.

Без нагрузки это влияние достаточно мало и составляет не более одного процента. При включении трансформатора с нагрузкой или восстановлении работы энергосистемы после замыкания,  разность токов может привести к срабатыванию защиты.

Для компенсации этого явления ток включения дифзащиты выбирают большим, чем ток подмагничивания. Загрубление тока срабатывания может привести к несрабатыванию защиты даже при наличии КЗ внутри трансформатора.

Исключить влияния тока подмагничивания можно при помощи искусственной блокировки защиты при подключении высокого напряжения.

При возникновении повреждения трансформатора или замыкания его выводов при блокированном автоматическом отключении задержка может привести к аварии.

В случае, когда указанные способы отстройки дифзащиты неприменимы из-за недостатков, используют трансформаторы тока с быстронасыщаемым магнитопроводом, которые не реагирует на быстротечные колебания подмагничивающего тока.

Для правильной работы измерительных схемы необходимо чтобы фаза втекающих и вытекающих токов совпадала.

Для компенсации фазового сдвига обмотки токовых трансформаторов включаются по такой же схеме, как и защищаемый трансформатор. В случае использования схемы соединения  обмоток «треугольник»/«звезда», трансформаторы тока включаются по обратной схеме – на входе «звезда», на выходе – «треугольник».

На линии, соединяющие трансформаторы тока с исполнительными цепями автоматики, возможны влияния помех, приводящих к ложным срабатываниям защиты. Для предотвращения этого измерительные цепи должны быть надежно экранированы. Зачастую дифзащиту устанавливают на отдельно расположенных трансформаторах для исключения влияния помех от смежных устройств энергетики.

Коэффициенты трансформации измерительных цепей должны обеспечивать равенство токов на входе и на выходе. На практике это условие недостижимо, потому трансформаторы токов выпускаются со стандартными напряжениями. Для этого в измерительные цепи вводят согласующие трансформаторы и автотрансформаторы.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  • замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • замыкания внутри обмоток трансформатора.

Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.

Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.

Защита по максимальному току (МТЗ)

– срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле

Рис.1

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Разновидностью МТЗ является защита по току отсечки.

При удалении трансформатора по линии от источника энергии ток короткого замыкания становится меньшим из-за потерь на сопротивление.

Вместе с тем задержка по времени для МТЗ не позволяет быстро отключить трансформатор при внутренних межфазных замыканиях, приводящих к выходу трансформатора из строя. Конструктивно защита по токовой отсечке (Рис. 2) отличается от МТЗ отсутствием реле времени. Селективность реле достигается подбором тока срабатывания реле автоматики. Данный ток должен быть равным току КЗ на защищаемом участке.

Релейная защита силовых трансформаторов

Рис. 2

Срабатывание МТЗ по току обладает недостаточной чувствительностью в некоторых случаях, например при защите повышающего трансформатора. В данном случае защита запускается по напряжению (Рис. 3). Трансформаторы напряжения включенные между фазовых шин управляют работой реле автоматики А и А1. Срабатывание этих реле происходит при понижении порога напряжения короткого замыкания. Алгоритм работы аналогичен МТЗ, но сторона подключения – всегда источник энергии.

Назначение автоматических защитных реле

Часть данной электрической автоматики предназначена для обнаружения нестандартного режима работы оборудования (замыкание от земли одной фазой, трансформаторная перегрузка, газовые выделения разлагающихся трансформаторных масел, снижении их уровня).

Виды электроавтоматики:

  • АПВ – автомат повторного включения;
  • АВР – автоматическое включение резервных сетей;
  • АРВ – авторегулировка возбуждения генератора;
  • авторегулировка статического конденсатора;
  • трансформаторное автоохлаждение;
  • ОМП – обнаружение поврежденных мест в электролиниях.

Помимо технологической автоматики, существует режимное противоаварийное оборудование:

  • АЧР – автомат частотной разгрузки;
  • АРЧМ – автомат регулировки активной мощности и частоты;
  • ДАРН – прибор дополнительной разгрузки напряжения;
  • ДАРТ – устройство для дополнительной токовой разгрузки.

Основные качества релейной защиты

Селективность – способность определять непосредственно поврежденные элементы, срабатывая при повреждениях и не срабатывая в нагрузочных режимах. Селективностью называется способ защиты, способный посредством автоматических выключателей отключать поврежденные элементы, не затрагивая при этом всей системы.

Чувствительность – способность защитного реле моментально реагировать на проявления аварийных ситуаций. При повреждении высоковольтных линий, работающих с минимальной нагрузкой, токи КЗ могут иметь более низкие показатели, чем токи нагрузки. С учетом этого, использование токовых защит становится невозможной, что вынуждает переходить к более дорогостоящим видам.

Быстродействие – определяют следующие параметры:

  • благодаря ускоренному отключению поврежденных участков предотвращаются тяжелые системные аварии;
  • ускоренное отключение позволяет работать электродвигателям, позволяя использовать потребителям низкое напряжение;
  • благодаря быстрому отключению снижаются разрушения поврежденных элементов.

Надежность – позволяющая автоматическим защитным реле эффективно справляться с возложенной задачей на протяжении отведенного для этого периода.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Условная схема дифференциальной защиты

Если принять за узел защищаемый объект (рис. 1.1) и фиксировать ток на всех ветвях, связывающих защищаемый объект (узел) с внешней сетью, то при повреждении на отходящей ветви сумма токов, входящих и выходящих из узла, будет равна нулю.

Рис. 1.1. Схема дифференциальной защиты с циркулирующими токами

При повреждении защищаемого объекта (КЗ в узле) сумма токов по ветвям будет равна току короткого замыкания.

Поэтому такое выполнение продольной дифференциальной защиты именуется схемой с циркулирующими токами. Другим вариантом исполнения дифференциального принципа (рис. 1.2) является схема с уравновешенными напряжениями, в которой вторичные обмотки ТТ соединяются между собой последовательно, и в эту же цепь включен реагирующий орган (дифференциальное реле). Считается, что одноименные концы первичной и вторичной обмоток ТТ расположены с одной стороны. Ток в реле будет равен:

(1–1)

где Z – сумма сопротивлений вспомогательных проводов, обмотки реле и обмоток ТТ.

Рис. 1.2. Схема дифференциальной защиты с уравновешенными напряжениями

В нормальном режиме и коротком замыкании вне зоны действия Е1 = Е2 и направлены в противоположные стороны, ток в реле равен нулю.

В схеме с уравновешенными напряжениями в нормальном режиме и внешних коротких замыканиях токи во вторичных обмотках ТТ отсутствуют, и ТТ работают в режиме холостого хода. Это может привести к недопустимому перегреву ТТ и появлению высоких напряжений во вторичных цепях, поэтому схема с уравновешенными напряжениями со стандартными трансформаторами тока по рис. 1.2 не применяется, обычно устанавливаются специальные промежуточные ТТ. Кроме того, схема требует использования максимально близких по характеристикам ТТ. Таким образом, схема с уравновешенными напряжениями получается более сложной, чем с циркулирующими токами, и поэтому она получила ограниченное применение.

В свою очередь схема с циркулирующими токами может выполняться в двух вариантах: с малым сопротивлением и с большим сопротивлением дифференциальной цепи реле.

Чаще всего схема с большим сопротивлением дифференциальной цепи применяется при выполнении дифференциальных защит шин, где возможно глубокое насыщение ТТ на том присоединении, где произошло внешнее для дифференциальной защиты КЗ и в чувствительных дифференциальных защитах от замыканий на землю. В настоящее время в связи с уменьшением затрат на реализацию сложных алгоритмов при переходе на электронную элементную базу изготовления реле, схема с большим сопротивлением вытесняется защитами с малым сопротивлением дифференциального реле.

При рассмотрении принципа действия дифференциальных защит было принято, что в нагрузочном режиме и в режиме внешнего короткого замыкания ток в дифференциальной цепи равен нулю. Это возможно только в том случае, если вторичные токи ТТ точно равны первичным приведенным токам, т. е.

Определим, из каких составляющих складывается ток небаланса.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: