Принцип работы выпрямителя

Двухполупериодный мостовой выпрямитель

Чтобы выпрямить оба полупериода синусоидальной волны, как мы уже говорили ранее, в мостовом выпрямителе используются четыре диода, соединенных вместе в конфигурации «моста». Вторичная обмотка трансформатора подключена с одной стороны диодного моста, а нагрузка — с другой.

На следующем рисунке показана схема мостового выпрямителя.

Во время положительного полупериода переменного напряжения диоды D1 и D2 смещены в прямом направлении, в то время как диоды D3 и D4 смещены в обратном направлении

Это создает положительное напряжение на нагрузочном резисторе (обратите внимание на плюс-минус полярности на нагрузочном резисторе)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь диоды D3 и D4 смещены в прямом направлении, а диоды D1 и D2 — в обратном. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…

Подробнее

Обратите внимание, что независимо от полярности напряжения на входе, полярность на нагрузке постоянная, а ток в нагрузке течет в одном направлении. Таким образом, схема преобразует входное переменное напряжение в пульсирующее постоянное напряжение

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Будет интересно Как работает диод с барьером Шоттки

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Силовой выпрямительный диод.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. Как мы увидим далее, у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую ( в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Работа мостовой схемы

Разбираемся с электроизмерительными приборами

Устройство состоит из четырех полупроводниковых вентилей, объединенных в мост. В таком случае вторичная обмотка трансформирующего устройства объединяется с противоположными плечами диодного моста. Нагрузочные резисторы подключат посредством других плеч. При этом выходные характеристики значительно выше, чем у двухпериодных, из-за течения через прибор всей волны напряжений переменного тока.

Во время положительной полуволны сигнал движется от отрицательной части вторичной обмотки трансформирующего устройства через вентили и нагрузочный резистор к положительной части совокупности витков трансформирующего устройства. При негативной полуволне процесс происходит в обратном порядке.

Силовые устройства

Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.

В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.

Двухполупериодный мостовой выпрямитель

Чтобы выпрямить оба полупериода синусоидальной волны, как мы уже говорили ранее, в мостовом выпрямителе используются четыре диода, соединенных вместе в конфигурации «моста». Вторичная обмотка трансформатора подключена с одной стороны диодного моста, а нагрузка — с другой.

На следующем рисунке показана схема мостового выпрямителя.

Во время положительного полупериода переменного напряжения диоды D1 и D2 смещены в прямом направлении, в то время как диоды D3 и D4 смещены в обратном направлении

Это создает положительное напряжение на нагрузочном резисторе (обратите внимание на плюс-минус полярности на нагрузочном резисторе)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь диоды D3 и D4 смещены в прямом направлении, а диоды D1 и D2 — в обратном. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.

Hantek 2000 — осциллограф 3 в 1

Портативный USB осциллограф, 2 канала, 40 МГц….

Подробнее

Обратите внимание, что независимо от полярности напряжения на входе, полярность на нагрузке постоянная, а ток в нагрузке течет в одном направлении. Таким образом, схема преобразует входное переменное напряжение в пульсирующее постоянное напряжение

Трехфазный выпрямитель

Прибор представляет собой схему, которая используется для преобразования переменного сигнала. Применяется в трехфазных электрических сетях. Существует несколько схем, включающих разное число диодов. В некоторых схемах используются диодные мосты.

Если брать трехфазный прибор, то степень колебаний сигнала снижается. Трехфазный выпрямитель получается путем преобразования однофазного двухполупериодного выпрямителя. Обычно схема включает 6 или более вентилей. Напряжение, которое проходит через один диод, равняется трети от максимального тока нагрузки. На выходе напряжение выше, чем у мостового прибора.

Однополупериодный преобразователь

Ниже приведена типичная схема подобного устройства с минимумом элементов.


Схема: простейший преобразователь

Обозначения:

  • Tr – трансформатор;
  • DV- вентиль (диод);
  • Cf – емкость (играет роль сглаживающего фильтра);
  • Rn – подключенная нагрузка.

Теперь рассмотрим осциллограмму в контрольных точках U1, U2 и Un.


Осциллограмма, снятая в контрольных точках U1, U2 и Un

Пояснение:

  • в контрольной точке U1 отображается диаграмма снятая на входе устройства;
  • U2 – диаграмма перед емкостным сглаживающим фильтром;
  • Un – осциллограмма на нагрузке.

Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.

Недостатки такой схемы очевидны — это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.

Принцип действия двухполупериодной схемы

Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.


Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом

Используемые элементы:

  • Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
  • DV1 и DV2 – вентили (диоды);
  • Cf – емкостной фильтр;
  • Rn – сопротивление нагрузки.

Приведем сразу для наглядности осциллограмму в контрольных точках.


Диаграмма прибора балансного типа

  • U1 – осциллограмма на входе;
  • U2 – график перед емкостным фильтром;
  • Un – диаграмма на выходе устройства.

Данная схема — это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U2. Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.

Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:

  • частота пульсаций на выходе устройства удваивается;
  • уменьшение «провалов» между импульсами допускает использование меньшей фильтрующей емкости;
  • двухтактный преобразователь обладает большим КПД, чем однополупериодный.

Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.


Схема: Пример использования диодного моста

Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.

Видео: Двухполупериодный выпрямительный мост

Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.

Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).


Схема: преобразователь на двуханодном кенотроне 6Ц4П

Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.

Однополупериодный многофазный выпрямитель

Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка;
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Фильтрация постоянного напряжения

Сигнал на выходе, который мы получаем от двухполупериодного мостового выпрямителя, является по сути пульсирующим постоянным напряжением, которое вырастает до максимума, а затем снижается до нуля.

Для того чтобы избавиться от пульсаций, нам необходимо отфильтровать двухволновой сигнал. Один из способов сделать это — подключить сглаживающий конденсатор.

Первоначально конденсатор разряжен. На протяжении первой четверти цикла диоды D1 и D2 смещены в прямом направлении и из-за этого сглаживающий конденсатор начинает заряжаться. Процесс заряда длится до тех пор, пока напряжение с мостового выпрямителя не достигнет своего пикового значения. В этот момент напряжение на конденсаторе будет равно Vp.

После того, как напряжение с выпрямителя достигает своего пика, оно начинает уменьшаться. Как только напряжение снизиться ниже Vp соответствующая пара диодов (D1 и D2) не будет проводить.

Когда диоды выключены, конденсатор разряжается через нагрузку, пока не будет достигнут следующий пик. Когда наступает следующий пик, конденсатор заряжается уже через диоды D3 и D4  до пикового значения.

Классификация по назначению и устройству

Разбираемся с электроизмерительными приборами

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде). Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными. Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Достоинство – дешевизна.

Однополупериодный выпрямитель

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R. Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала. Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.

Трехфазные выпрямители

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector