Тиристоры: принципы работы для начинающих электриков простыми словами и 3 методики проверки их работоспособности в домашних условиях

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Работа в цепи постоянного тока

Если объяснять принцип работы тиристора простым языком, то он заключается во включении полупроводникового прибора посредством подачи импульса электрического тока непосредственно в цепь управления положительной полярности. На продолжительность переходного процесса существенно влияет характер производимой нагрузки, а также другие факторы:

  • скорость и амплитуда созданного импульса;
  • температура полупроводниковой конструкции;
  • передаваемое напряжение;
  • ток нагрузки.

В цепи с тиристором при увеличении прямого напряжения не должно фиксироваться завышенных значений скорости нарастания. В противном случае может происходить непреднамеренное включение прибора без подачи сигнала. Однако крутизна производимого импульса не должна быть низкой.

Выключение элементов может происходить естественным или принудительным образом. В первом случае коммутация в системах переменного тока осуществляется в момент падения электрического тока до минимума. Что касается вариантов принудительного выключения, то оно может быть весьма разнообразным:

  1. Подключение специализированной цепи с наличием заряженного конденсатора вызывает возникновение разряда на проводящий элемент. Встречный поток снижает ток до нуля, поэтому прибор выключается.
  2. Подключение контура, вызывающего колебательный разряд, позволяет пропустить электричество через тиристор на встречу прямому току. При достижении равновесия происходит выключение.
  3. Переходный процесс может вызываться при оказании комплексной нагрузки. При наличии определенных параметров возникает колебательный характер, подразумевающий изменение полярности.

Определение исправности устройства

Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:

  1. Источник постоянного тока соединяется через тринистор. В цепь также включается лампа с соответствующим напряжением.
  2. Щупы мультиметра подводятся к катоду и аноду. Следует установить режим измерения, соответствующий постоянному напряжению.
  3. Устройство должно быть рассчитано на измерение показателей, которые превышают значения применяемого источника напряжения.
  4. В качестве источника питания можно использовать батарейку любого номинала.
  5. Осуществляется подача напряжения для теста устройства.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.

Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород

Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания

Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Выпрямители

Выпрямители — устройства, предназначенные для преобразования переменного тока в постоянный,— по характеру выпрямленного тока подразделяют на одно- и двухполупериодные (одно- или двухтактные). Нагрузка R и вентиль (диод) В подключены последовательно к источнику переменного тока. Напряжение и, приложенное к вентилю проходит через вентиль и нагрузку с перерывами, равными половине периода переменного тока, поскольку вентиль пропускает только положительную полу-волну переменного тока.

Двухтактный (двухполупериодный) выпрямитель в отличие от однотактного пропускает поочередно через разные диоды (или группы диодов) ток, обусловленный обеими полуволнами приложенного переменного напряжения. В связи с этим действующее выпрямленное напряжение в схеме двухтактного выпрямления выше, чем у однотактного. В течение первого полупериода ток проходит через вентиль В1, а в течение второго — через вентиль В2. Выпрямленный ток в течение полупериода замыкается на сопротивление нагрузки R через вентили В2 и В4, а в течение второго — через вентили В1 и ВЗ. Кривая выпрямленного тока показана на рис. 129, в.

Регулируемые выпрямители на тиристорах помимо выпрямления приложенного переменного напряжения обеспечивают возможность регулирования выпрямленного напряжения, изменяя момент открытия тиристора с помощью управляющего воздействия. Особенностью тиристоров является то, что посредством управляющего импульса они могут быть только открыты, а заперты быть не могут. Запертое состояние тиристора наступает, когда проходящий через него ток снижается до нуля.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться: На управляющий выход и катод. Название — с управлением катодом.
  • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

История изобретения

Изобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления. Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков. Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:

  • проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
  • диэлектрики — физические тела, плохо проводящие ток;
  • полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.

В 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.

В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов. В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.

Диагностика прибора

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений

При этом неважно, аналоговый или цифровой тип измерителя используется

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера

При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить

Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Тиристоры

1. Определение, назначение и классификации

Тиристор – полупроводниковый прибор, имеющий три и более p-n-перехода, используемый для электронного переключения. Особенность – то, что его ВАХ имеет участок с отрицательным дифференциальным сопротивлением. Материал – кремний. Применяется тиристор в качестве электронного ключа и используется для регулирования мощностью. Регулирование заключается как во включении и отключении мощности нагрузки, так и для изменения величины этой мощности.

В зависимости от числа выводов могут быть:

1) динистор (тиристор без токоуправления),

2) тринистор (тиристор с токоуправлением).

Каждый из этих тиристоров может быть симметричным (симистор) и несимметричным.

2. Транзисторы без токоуправления (динисторы)

Динистор имеет четырехслойную структуру, три pn перехода и два вывода: анод и катод.

При U>0 к П1 и П3 прикладывается прямое напряжение и они открыты, а к переходу П2 – прикладывается обратное – он закрыт. Ток через тиристор мал и определяется обратным током перехода П2.

Если увеличить E, то первоначально ток тиристора изменяется незначительно, но потом решающую роль начинает играть ударная ионизация. Происходит пробой перехода П2. Напряжение на тиристоре, соответствующее этому переходу называется напряжением переключения . Обратный переход начинает резко возрастать, а значит возрастает и ток. С ростом тока растет и падение напряжения , вследствие чего напряжение на тиристоре резко падает, достигая некоторого значения. В дальнейшем при росте тока под действием источника напряжения на тиристоре возрастает незначительно. Переход тиристора из состояния, когда ток через него почти не протекает (закрытое состояние) в состояние, когда ток резко возрастает (открытое состояние) происходит быстро и соответствующий ему процесс является неустойчивым.

ВАХ, описывающая работу тиристора:

I – тиристор закрыт (откл)

II – переход из закрытого в открытое состояния

III – тиристор открыт (вкл)

В исходное тиристор можно вернуть, отключив источник, то есть сделав напряжение равным нулю.

При противоположной полярности источника несимметричный динистор тока не пропускает.

3. Тринистор. Тиристор с токоуправлением

Тринистор имеет четырехслойную структуру, три p-n-перехода и три вывода: анод, катод, управляющий электрод. Управляющий электрод может подключаться к любому из средних слоев.

УЭ – управляющий электрод (управление по катоду).

Управляющий электрод предназначен для того, чтобы изменить напряжение тиристоров . При подаче управляющего тока к переходу П3 прикладывается дополнительно прямое напряжение. Ток управления добавляется к току перехода П3, а следовательно, и к току перехода П2.

Общий ток тиристора возрастает, и он переключается при меньших значениях напряжений. Изменяя величину токоуправления можно изменить напряжение переключения тиристора.

В системах управления часто используются тиристорные приводы. В этом случае тиристоры открываются по сигналу управления, который представляется в виде коротко временного импульса тока. Этим импульсом тиристор открывается, а изменение напряжения включения тиристора производится за счет изменения времени управляющего импульса. То есть управление тиристором производится не величиной тока, а временем его поступления. Такие системы регулирования называются системами импульсно-фазового управления (СИФУ).

4. Симисторы

Симистор – тиристор, который переключается из закрытого состояния в открытое как в прямом, таки в обратном направлении. Он имеет симметричную ВАХ и применяется для переключения в цепях переменного тока. Структура симистора достаточно сложная, например, симметричный динистор имеет 5 слоев и 4 перехода, симметричный тиристор – 6 и более слоев и более 5 переходов.

ВАХ симметричного динистора:

Применение тиристора

Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Фото — применение Тиристора вместо ЛАТРа

Не стоит забывать и про тиристор зажигания для мотоциклов.

Как проверить

Учитывая частый выход радиоэлемента из строя, для своевременного нахождения причины неисправности, желательно иметь удобный комбинированный измерительный прибор либо упрощенной модификации, либо цифрового исполнения.

Чтобы получить достоверный результат при проверке, рекомендуется собрать специальное приспособление по предложенной схеме.

Описание схемы

Структура тиристора включает в себя, четыре чередующихся слоя p и n типа проводимости p1n1p2n2. Между слоями образуются электронно-дырочные переходы. Слои p1 и n2 и переходы p1n1 и p2n2 получили название эмиттерных, внутренние слои n1 и p2 и переход между ними являются базовыми, а переход между ними – коллекторный.

Подключение к схеме тиристора возможно благодаря трем выводам:

  • «Анод» – отвод от слоя p1. На него подается сигнал положительной полярности;
  • «Катод» – отвод от слоя n2. К нему подключается провод с отрицательной полярностью;
  • «Управляющий электрод» – отвод от слоя n1. На него подается управляющий сигнал, благодаря которому данный радиоэлемент приводится в рабочее состояние. (Исключение составляют динисторы – у них только два вывода и нет управляющего вывода).

Для проверочных работ над устройствами малой и средней мощности необходимо произвести подачу напряжения на выводы «анод» и «катод», а на управляющий электрод пустить кратковременный сигнал для открытия проводимости между «анодом» и «катодом».

В мультиметре при установке положения измерения сопротивления между щупами возникает напряжение. Можно воспользоваться им при тестировании прибора.

Пошаговое руководство

  1. На катодный отвод тиристора подсоединить черный щуп с отрицательным значением.
  2. На анодный конец тиристора прикрепить красный щуп с положительным значением.
  3. К управляющему электроду подключить выключатель, а другой конец выключателя подсоединить к мультиметру в гнездо с красным щупом.
  4. Установить мультиметр в положение измерения сопротивления в пределах не более 2000 Ом.
  5. Включить выключатель кратковременно и через несколько секунд отключить его.
  6. Проверить удерживается ли прохождение тока. Если да, то тиристор исправен. Для отключения его достаточно прекратить подачу напряжения на «катод» или «анод».
  7. Если данная процедура не дала результата, т.е. проводимость не удерживается, то необходимо выключатель переставить на черный щуп вместо красного и снова повторить пункты 4-6.
  8. Если и в этом случае нет удержания прохождения тока, то тиристор не годится к применению.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: