Принцип работы трансформатора

Понятие мощности трансформатора

Трансформатор переменного тока не производит электрическую энергию, а лишь преобразовывает ее по величине. Поэтому его мощность полностью зависит от ее величины  нагрузки (тока потребления) вторичной цепи.  При наличии нескольких потребителей должна учитываться суммарная нагрузка, которая может быть подключена одновременно. Для цепей переменного тока учитывается активный и реактивный характер потребления.

Активная

Данная составляющая часть характеристики определяется как среднее значение мгновенной за определенный период времени. Для цепей синусоидального переменного тока в качестве отрезка времени используется значение периода колебания:

T=1/f,

где f – частота.

Активная часть  зависит от характера нагрузки, то есть от сдвига фаз между током и напряжением и определяется по формуле:

P=i∙U∙cosϕ,

где ϕ – угол сдвига фаз.

Активная составляющая  устройств переменного тока выражается в Ваттах, как и для цепей постоянного тока.

Реактивная

Реактивная нагрузка отличается от активной тем, что в течение одного периода колебаний напряжения электрическая энергия реально не потребляется, но возвращается назад. В результате того, что к питающему устройству подключены устройства с большой емкостью или индуктивностью (электродвигатели), между током и напряжением возникает сдвиг фаз.

Реактивная составляющая потребления определяется выражением:

Q= i∙U∙sinϕ

Единица измерения – вар (вольт-ампер реактивный).

Полная

Полная мощность трансформатора учитывает всю потребленную и  возвращенную энергию и находится из выражения:

S= i∙U

Все составляющие связаны соотношением:

S2=P2+Q2.

Единица измерения – ВА (вольт-ампер).

Полная мощность равняется активной только в случае полностью активной нагрузки.

Номинальная

Номинальная мощность трансформатора учитывает возможность работы конструкции с учетом подключения потребителей разного характера, то есть аналогична полной. При этом гарантируется исправная работа устройства весь заявленный срок службы при  оговоренных условиях эксплуатации.

Номинальная мощность, как и полная, учитывает активный и реактивный характер потребления, которое может изменяться во время эксплуатации.

Выражается в вольт-амперах.

Недостатки

Перед тем, как вводить в эксплуатацию представленное оборудование, необходимо изучить его основные недостатки:

  • Схема низковольтного типа будет значительно зависеть от высокого уровня напряжения. Чтобы избежать возникновения сетевого сбоя, потребуется создать продуманную систему подачи низкого напряжения. Только в таком случае прибор сможет перенести повышенные нагрузки.
  • Поток, рассеивающийся между обмотками, незначителен. При возникновении определенных неисправностей может возникнуть короткое замыкание. Его вероятность в этом случае значительно увеличивается.
  • Соединения, которые создаются между вторичными и первичными обмотками, должны быть идентичными. В противном случае могут возникнуть некоторые проблемы при работе агрегата.
  • Невозможно создать систему с заземлением с одной стороны. Нейтралью должны обладать оба блока.
  • Представленная система делает трудной задачей сохранение электромагнитного баланса. Для улучшения этого показателя потребуется увеличить корпус прибора. Если диапазон трансформации будет значительным, экономия ресурсов будет незначительной.

Также следует отметить, что выполняя ремонт автотрансформатора, устраняя возникшие неполадки и аварийные ситуации, может снизиться безопасность работы обслуживающего персонала. Высшее напряжение может наблюдаться и на низшей обмотке. В этом случае все элементы системы окажутся подведены к высоковольтной части. По правилам безопасности такое положение вещей недопустимо. В этом случае возникает вероятность пробоя изоляции проводников, которые присоединены к электрооборудованию.

Рассмотрев основные особенности работы и устройства автотрансформаторов, можно сделать выводы о целесообразности их применения в своих целях.

Трансформаторы тока

Чтобы понять, чем отличается трансформатор тока от трансформатора напряжения, необходимо знать особенности первого и второго устройства. Трансформаторы тока созданы — в первую очередь — как измерительные или же защитные приборы.

Защитные трансформаторы

Основную функцию данных трансформаторов легко понять. Они строго «следят» за тем, чтобы каждый, кто залез в электрическую сеть, не получил смертельный удар. Отличительной особенностью является строгое контролирование. В самой электрической системе для комфортной работы приборов поддерживается очень высокое напряжение. Однако любая техника рано или поздно может дать сбой, поэтому обязательно нужно оставить окно, через которое специалисты-ремонтники смогут проверять состояние сети, проводить профилактические работы. Происходит это за счет трансформатора тока, который в определенном месте дает максимально безопасный доступ.

Измерительные трансформаторы

Измерительные трансформаторы представляют собой особые приборы. Основная их задача — преобразовывать переменный ток, в итоге получается такой же переменный, но уже с допустимыми для измерения значениями. С помощью данного устройства можно подключить к цепи вольтметр, амперметр или любой другой измерительный прибор.

Также имеется дополнительная функция — возможность подключить любую технику, не испортив ее, а также получить максимально точный и правильный результат измерений (иногда даже десятые доли могут радикально изменить картину).

Независимо от конкретного типа основная особенность трансформатора тока заключается в особой точности, а также в возможности образовывать некоторую необходимую безопасную изоляцию.

Принцип работы трансформатора тока

Принцип работы трансформатора тока основан на принципах электромагнитной индукции, которая действует в электрическом/магнитном поле. Более подробная информация представлена на рисунке:

Он преобразовывает начальное значение векторного тока, проходящего в электрической цепи, во вторичную величину (при этом важно учесть фактор пропорционального равенства между модулем и углом передачи тока)

Первичная обмотка устройства, имеющая некое число витков (W1), пропускает через себя ток (I1). Ток, в свою очередь, преодолевает некоторое сопротивление (Z1).

Рядом с данной катушкой происходит процесс образования магнитного потока (Ф1), регулируемый при помощи перпендикулярно-расположенных магнитных проводов (важное замечание — именно такое расположение может обеспечить минимальную потерю во время преобразования электроэнергии)

После пересечения перпендикулярных витков (W2) обмотки, (Ф1) — магнитный поток формирует силу электрического движения (Е2). Эта сила вызывает возникновение тока (I2) на обмотке (вторичной). А вот I2, который подключен к нагрузке выхода (Zн), преодолевает Z2 — сопротивление, и способствует образование меньшего напряжения на концах электроцепи.

Значение K 1 — коэффициент трансформации — определяется выражением: I1 / I2 (отношение первого вектора ко второму). Величина этого отношения вычисляется в начальных построениях проектирования устройства.

Различия между истинными показателями модели и расчетным результатом объясняется важным аспектом метрологии, которым является вид класса точности устройства.

Важно — на практике ток во вторичной обмотке не является постоянным, именно это определяет значение K1. К примеру, его отношение 10000/50 обозначает следующее: во время прохода электротока по области первичной обмотки единица килоампера области вторичной обмотки приравнивается к величине пятидесяти килоампер.. Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока

Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки

Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока. Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки.

Во время эксплуатации трансформатора тока нельзя забывать про возникновение нежелательных проблем, одной из которых является пораженческая способность пробоя изоляции (из-за высокого потенциала).

Так как магнитный провод трансформатора тока имеет металлический компонент в строении, у него есть отличные свойства проводимости, которые помогают ему соединить между собой первичную и вторичную обмотки.

Говоря о принципах работы трансформатора тока, скажем и о том, что к его главному предназначению следует отнести решение эксплуатационных задач электротехнических систем, ведь наша промышленность готовит огромный ассортимент выпуска электрических установок, которые не всегда обладают 100-процентным коэффициентом полезности.

А трансформатор способен этот КПД увеличить благодаря усовершенствованию схем и конструкций.

Принцип действия и режимы работы

Простой трансформатор снабжен сердечником из пермаллоя, феррита и двумя обмотками. Магнитопровод включает комплект ленточных, пластинчатых или формованных элементов. Он передвигает магнитный поток, возникающий под действием электричества. Принцип работы силового трансформатора заключается в преобразовании показателей силы тока и напряжения с помощью индукции, при этом постоянной остается частота и форма графика движения заряженных частиц.

В трансформаторах повышающего типа схема предусматривает повышенное напряжение на вторичной обмотке по сравнению с первичной катушкой. В понижающих агрегатах входной вольтаж выше выходного показателя. Сердечник со спиральными витками располагается в емкости с маслом.

При включении переменного тока на первичной спирали образуется переменное магнитное поле. Оно замыкается на сердечнике и затрагивает вторичную цепь. Возникает электродвижущая сила, которая передается подключенным нагрузкам на выходе трансформатора. Функционирование станции проходит в трех режимах:

  1. Холостой ход характеризуется разомкнутым состоянием вторичной катушки и отсутствием тока внутри обмоток. В первичной спирали течет электричество холостого хода, составляющее 2-5% номинального показателя.
  2. Работа под нагрузкой проходит с подключением питания и потребителей. Силовые трансформаторы показывают энергию в двух обмотках, работа в таком регламенте является распространенной для агрегата.
  3. Короткое замыкание, при котором сопротивление на вторичной катушке остается единственной нагрузкой. Режим позволяет выявить потери для разогрева обмоток сердечника.

Режим холостого хода

Электричество в первичной спирали равно значению переменного намагничивающего тока, вторичный ток показывает нулевые показатели. Электродвижущая сила начальной катушки в случае ферромагнитного наконечника полностью замещает напряжение источника, отсутствуют нагрузочные токи. Работа на холостом ходу выявляет потери на мгновенное включение и вихревые токи, определяет компенсацию реактивной мощности для поддержания требуемого вольтажа на выходе.

В агрегате без ферромагнитного проводника потерь на изменение магнитного поля нет. Сила тока холостого режима пропорциональна сопротивлению первичной обмотки. Способность противостоять прохождению заряженных электронов трансформируется при изменении частоты тока и размера индукции.

Работа при коротком замыкании

На первичную катушку поступает небольшое переменное напряжение, выходы вторичной спирали накоротко соединены. Показатели вольтажа на входе подбирают так, чтобы ток короткого замыкания соответствовал расчетному или номинальному значению агрегата. Размер напряжения при коротком замыкании определяет потери в катушках трансформатора и расход на противодействие материалу проводника. Часть постоянного тока преодолевает сопротивление и преобразуется в тепловую энергию, сердечник греется.

Напряжение при коротком замыкании рассчитывается в процентном отношении от номинального показателя

Параметр, полученный при работе в этом режиме, является важной характеристикой агрегата. Умножив его на ток короткого замыкания, получают мощность потерь

Рабочий режим

При подсоединении нагрузки во вторичной цепи появляется движение частиц, вызывающее магнитный поток в проводнике. Оно направлено в другую сторону от потока, продуцируемого первичной катушкой. В первичной обмотке происходит разногласие между электродвижущей силой индукции и источника питания. Ток в начальной спирали повышается до того времени, когда магнитное поле не приобретет первоначальное значение.

Магнитный поток вектора индукции характеризует прохождение поля через выбранную поверхность и определяется временным интегралом мгновенного показателя силы в первичной катушке. Показатель сдвигается по фазе под 90˚ по отношению к движущей силе. Наведенная ЭДС во вторичной цепи совпадает по форме и фазе с аналогичным показателем в первичной спирали.

Watch this video on YouTube

Сергушов Владислав ТОЭ-Т19

Для чего проводиться опыт КЗ в трансформаторе. В этой статья я постараюсь дать ответ.

Давайте разберем самое значение опыта. Испытание на обрыв при отсутствии нагрузки выполняется для определения потерь в сердечнике без нагрузки по току. Суть испытания заключается в том, что обмотка высокого напряжения остаётся разомкнутой в то время, как выходная обмотка подключается к обычной сети потребителя. Туда же подсоединяются и необходимые измерительные приборы – ваттметр, амперметр и вольтметр. В результате такого соединения, внешнее напряжение, которое прикладывается к устройству, медленно увеличивается от нуля до своего номинального значения.

Как выполняется опыт КЗ на практике ? При подключении обмотки-1 трансформатора к сети и замыкании обмотки-2 на клеммах, наступит опасный режим, известный как короткое замыкание. Под влиянием токов провода обмоток выделяют большой объем теплоты, пагубно воздействующий на изоляцию. В аварийном режиме нередко возникают механические напряжения, разрушающие трансформаторные обмотки.

Во избежание разрушительного воздействия полных токов, обмотка № 2 все также замыкается накоротко, а к обмотке-1 выполняется подводка сниженного напряжения. В этом случае ток КЗ становится равным величине номинала, при котором трансформатор обычно и работает. То есть, во время проверки с ним ничего не произойдет. Данная процедура известна как опыт короткого замыкания трансформатора, когда потенциал подключенной обмотки-1 будет равно всего лишь нескольким процентам от номинала. Оно получило название напряжения короткого замыкания. Этот показатель у силовых устройств, в том числе у трехфазного трансформатора, равняется 5-10% от номинального значения. Полученное значение измеряется вольтметром, подключенным в цепь первичной обмотки. Дополнительно устанавливаются амперметры для замеров номинальных токов в обеих обмотках, а ваттметр учитывает мощность потерь, выявленных во время короткого замыкания. Ранее уже отмечалось, что величина магнитного потока трансформатора будет пропорциональна напряжению в его первичной обмотке. Во время проведения опыта КЗ его значение в сердечнике слишком маленькое, поскольку напряжение в данном режиме, во много раз ниже номинала. В связи с этим, потери в стальных пластинках можно не учитывать и условно считать основным назначением мощности перекрытие потерь в трансформаторных обмотках.

Используемая схема опыта короткого замыкания и ее результаты создают предпосылки для определения коэффициента мощности cos φ, активного и реактивного сопротивления обмоток. В любых трансформаторах определяют так называемые обязательные потери. Они включают в себя потери в обмотках и стальном сердечнике. Первая часть относится к категории электрических потерь, пропорциональных квадрату тока. Они определяются показаниями ваттметра, полученными в процессе опыта. Вторая часть представляет собой магнитные потери, связанные с частотой данной электрической сети и значением магнитной индукции. Данные потери также определяет ваттметр, когда трансформатор вводится в режим холостого хода. Проводимые исследования позволяют установить коэффициент полезного действия трансформатора. При его определении нужно активную мощность обмотки-2, соотнести с мощностью обмотки № 1. КПД трансформаторных устройств достаточно высокий и в некоторых случаях доходит до 98-99%.

Основная цель проведения опыта короткого замыкания трансформатора, соотношения между током, напряжением и магнитным потоком в режиме короткого замыкания

В обеих обмотках при опыте короткого замыкания токи имеют номинальные значения, поэтому потери энергии в обмотках такие же, как и при номинальной нагрузке. Следовательно, мощность, получаемая трансформатором из сети при опыте короткого замыкания, затрачивается на потери энергии в проводах обмоток. Т.к. опыт проводится при пониженном напряжении, значение магнитного потока будет также небольшим. В связи с небольшим значением магнитного потока, магнитными потерями в стали можно пренебречь, а потому считается, что опыт короткого замыкания проводится для того, чтобы установить электрические потери.

Принцип действия

Действие электромагнитных потей трансформатора

Принцип работы однофазного трансформатора основан на законе, согласно которому действующее в витке переменное э/м поле наводит ЭДС в расположенном рядом проводнике. Явление названо законом электромагнитной индукции Фарадея, который первым обнаружил этот интересный эффект. Для его обоснования ученый разработал целую теорию, которая легла в основу работы большинства современных электротехнических устройств и агрегатов.

Основные ее положения:

  • при прохождении тока через виток провода вокруг него формируется магнитный поток, захватывающий все такие же витки, расположенные рядом;
  • под воздействием этого потока в них наводится ЭДС, по форме изменений совпадающая с исходным полем;
  • при наличии в нем ферромагнетика действие этого эффекта усиливается.

Все эти принципы заложены в основу действия современного трансформаторного изделия. При подключении к вторичной обмотке нагрузки рабочая цепь замыкается, а энергия практически без потерь передается потребителю.

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

Скачать и посмотреть ГОСТ 15150 можно здесь(откроется в новой вкладе в PDF формате):Смотреть файл

Расшифруем первые три блока:


Расшифровка маркировки: 1,2,3 блока

  1. Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
  2. Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
  3. Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
  4. Литерой «Т» помечаются трёхобмоточные преобразователи.
  5. Последний знак характеризует особенности трансформатора:
  • «Н» – РПН(регулировка напряжения под нагрузкой);
  • пробел – переключение без возбуждения;
  • «Г» – грозозащищенный.

Классификация по видам

Силовые

Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.

Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.

Автотрансформаторы

Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.

Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.

Трансформаторы тока

Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.

Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.

Трансформаторы напряжения

Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.

Импульсные

Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды

Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.

Разделительные

Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.

Существует два типа таких устройств:

Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.

Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.

Согласующие

Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.

Пик-трансформаторы

Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.

Сдвоенный дроссель

Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.

Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector