Предлагаемое решение
Вариант первый
Экономически микро ГЭС (до 100кВт) эффективны, разработаны с учетом современных технологий, просты в управлении, полностью автоматизированы. Оборудование не требует присутствия человека. Качество тока, вырабатываемого микро ГЭС, соответствует ГОСТу. Практика использования микро ГЭС давно отработана.
Микро ГЭС не требуют приобретения какого-либо топлива. Простота технологии выработки электроэнергии, затраты труда на единицу мощности ГЭС почти в 10 раз меньше, чем на ТЭЦ.
Прибрежная волновая электростанция с микро ГЭС с пропеллерной турбиной Каплана низкого давления – один из перспективных путей выработки электроэнергии для прибрежных удалённых объектов.
Простая, эффективная и дешёвая морская прибрежная электростанция для питания удаленных объектов с микро ГЭС, устройствами для забора и подъёма воды, резервуаром на высоте около 3м, работающая от давления воды, поднятой в резервуар за счет энергии морских или океанских волн, в том числе, с малой глубины.
Поплавок в виде тележки с килем и тороидальными баллонами большого диаметра для «перекатывания» через закрученный гребень волны на малых глубинах. Простейший нагнетательный насос внутри колонны внизу. Впускной и выпускной клапаны.
Группа устройств забора и подъёма воды за счет волновой энергии поднимает воду в резервуар на высоту около 3м и выше.
Вариант второй
Простой, эффективный и дешёвый морской прибрежный волновой электрогенератор в составе группы, для питания удаленных объектов, работающий за счет энергии морских или океанских волн, в том числе, на малой глубине в полосе прибоя.
Основные отличительные особенности решения:
Независимость от направления волн: Устройство использует не только фактор подъёма и спада волны, но и фактор движения волн в определенном направлении («вытягивание» силовой части в направлении движения волн за счет киля).
Легкость обслуживания: движущиеся части над поверхностью воды (под водой устанавливать электрогенератор нельзя), устройство близко к берегу – короткая электропроводка.
Поплавок в виде тележки с килем и тороидальными баллонами большого диаметра – для «перекатывания» через закрученный гребень волны в полосе прибоя.
Для выработки э/энергии используется круговой, а не линейный возвратно-поступательный генератор с низким КПД;
Маховик – накопитель энергии, зацеплен с шестерней на генераторах, периодически «подкручивается» прохождением волн;
Рычаг, «подкручивающий» маховик через механизм одностороннего вращения (храповик), автоматически оптимально ориентирован по направлению волн за счёт киля на тележке с баллонами на осях по её краям;
Возможно использование одного или двух генераторов – в зависимости от наличия генераторов по мощности и средней высоты волн в местности (энергии волны).
К примеру, мощность генератора (или суммарная мощность 2-х генераторов) – 10 кВт. В течение одной волны генератор работает около 5 сек. С периодом: 1 волна – каждые 10 секунд, в течение 1 часа генератор работает 0,5 часа и ориентировочно вырабатывает 5 кВт/час электроэнергии.
Электростанция из 10 прибрежных волновых электрогенераторов имеет усреднённую мощность 50 кВт. опубликовано econet.ru
Актуальность идеи
В настоящее время морская прибрежная волновая энергия практически не используется, хотя запасы ее неисчерпаемы. Среди возобновляемых источников энергия волны обладает наибольшей удельной мощностью: 15 кВт/погонный метр.
Прибрежная волновая электростанция должна удовлетворять следующим требованиям:
- Энергия волн идет по поверхности, под водой движения практически нет, т.е. забор энергии – только с поверхности воды. Движущиеся части под водой исключены. Забор энергии идёт в зоне максимальной волновой энергии в полосе прибоя.
- Используется не только фактор подъёма и спада волны, но и фактор движения волн в определенном направлении.
- То, что станция «прибрежная», предполагает близкое наличие дна, поэтому обязательно использование опоры о дно. «Дайте мне точку опоры…». Забор энергии волны только от подъёма и спада без опоры – неэффективен.
- Генератор – обязательно над водой, под водой генератор устанавливать нельзя или практически сложно. Низкоэффективный «линейный» возвратно-поступательный генератор следует исключить.
Зона максимальной волновой энергии находится недалеко от берега. На гребне волны начинается бурун. Для преодоления буруна необходимы баллоны большого диаметра:
В основе идеи – тележка с килем и баллонами большого диаметра на осях по краям тележки. Это – по примеру одной из осей автомобиля повышенной проходимости с колёсами большого диаметра. Сама тележка находится на оси конца силового рычага, другой конец которого – на верху столба (колонны), выполняющего опорные функции. Силовая часть – между опорой (столбом) и верхним концом рычага (патент № 2597342).
Природа явления
Энергия волны – это возможность удовлетворить 20% энергетических потребностей населения Земли. При этом в основном сейчас развивают энергетику приливов.
Согласно оценкам ученых, из бегущей волны можно генерировать 2 ТВт энергии, что вдвое превышает общую выработку в мире. Океанские волны привлекательны тем, что их удельная мощность выше, чем у солнца и ветра. При 10-метровой волне этот показатель составит 2 МВт/пог. м.
Однако существуют ограничения. Использовать волновую энергию можно только при мощности 75-80 кВт на метр и высоте до 2 м. Такие показатели характерны для прибрежных зон на европейском западе, британском севере, тихоокеанских берегах Америки, Австралии и Новой Зеландии, Южной Африке.
География применения волновых электроэнергетических установок
Использование волновых электростанций незначительных мощностей находит применение в получении электропитания для небольших объектов:
- береговых сооружений;
- небольших поселений;
- автономных маяков, буев;
- научно-исследовательских приборов;
- буровых платформ.
Уже около 400 навигационных буев и маяков получают питание от волновых энергоустановок – как, например, плавучий маяк индийского порта Мадрас.
Португалия
Первая в мире крупная волновая электростанция с мощностью 2,25 МВт начала эксплуатироваться в 2008 году в районе португальского
Сейчас на станции функционируют три преобразователя энергии волн – змеевидные устройства, погруженные на одну половину в воду. Длина каждого преобразователя равна 120 метрам, а диаметр – 3,5. Вес так называемой морской змеи составляет 750 тонн. Волны приводят в движение секции преобразователей, а сопротивление гидравлической системы способствует выработке электричества, которое по кабелям передается на сушу (станция базируется в 5 км от берега). В настоящее время ведутся работы по увеличению мощности этой волной станции с 2,25 МВт до 21 МВт: планируется добавить еще 25 преобразователей. В этом случае установка обеспечит электроснабжением 15 тысяч домов.
Норвегия
Опытно-промышленные волновые электростанции были впервые введены в строй в 1985 году в Норвегии.
Одна из них, мощностью до 500 кВт, является пневматической волновой установкой, в которой нижняя открытая часть камеры погружена под самый низкий поверхностный слой воды.
Мощность второй составляет 450 кВт. Здесь применяется эффект набегания волны на 147-метровый конфузорный откос (отлогую конусообразную поверхность). Суживающийся канал расположен в фьорде, а турбинный водоприемник возвышается на 3 м над средним уровнем моря. Установка, размещенная на берегу, исключает трудности с ее ремонтом и обслуживанием.
Австралия
Принцип работы Oceanlinx заключается во вращении турбин сжатым воздухом, поступающим из специальной камеры. Конструкция станции громоздка, и благодаря тяжести своего веса она стоит на дне, не нарушая его структуры. Около 1/3 всей конструкции, а это составляет почти 15 метров, выступает над поверхностью воды.
Важным достоинством волновой станции такого типа является производство прогнозируемого количества энергии. Платформы работают вследствие возмущения океанической поверхности, а не самих волн. Это позволяет определить погодные условия, влияющие на количество вырабатываемой энергии, на 5–7 дней вперед. Мощность Oceanlinx составляет 1 МВт, а потребители получают около 450 кВт электричества.
Россия
Применение волновой энергетики в России делает только первые шаги. Совсем недавно волновая электростанция, аналогичная португальской, была в экспериментальном порядке запущена на полуострове Гамова в Приморском крае. Испытания проходили в бухте Витязь на морской экспериментальной станции «Мыс Шульца». Инициаторами этой идеи стали ученые Уральского федерального университета и исследователи Тихоокеанского океанологического института при Дальневосточном отделении Российской Академии Наук.
Испытания показали, что волновая энергетика обладает большими перспективами.
Опасения при запуске этой станции вызвали:
- возможные повреждения генератора от воздействующих на него волн;
- безопасность движения рыболовецких траулеров в непосредственной близости от станции.
Вместе с тем волновая установка, разработанная российскими специалистами, помимо основной задачи – выработки электрической энергии, может осуществлять ряд дополнительных функций:
- стать волногасителем, обеспечивая защиту береговых сооружений;
- производить автоматическую охрану морских границ.
Развивать волновую энергетику в России необходимо. Однако существующие запасы углеводородов, отработанные, проверенные временем, освоенные до мелочей технологии традиционной выработки электроэнергии ставят под сомнение рентабельность использования волновых электростанций больших мощностей. Волновые электростанции наравне с солнечными электростанциями для дома вероятно станут тем необходимым шагом вперед в энергетике которого все мы, так долго ждем.
Есть смысл применять альтернативную энергетику в малозаселенных районах побережья Северного Ледовитого океана, Приморья, Дальнего Востока.
Устройство ВЭС, работающих по принципу качения
Подобные сооружения располагают на воде. В процессе их строительства учитывают два типа энергии. Первой можно назвать энергию поверхностного качения волн. Здесь используется их способность раскачивать поплавки. Так называют особые преобразователи, которые отслеживают профиль волны. Существует несколько видов поплавков.
«Утка» Солтера
Такое необычное название присвоили цепочке из большого количества поплавков, установленных на одном валу. Чтобы обеспечить эффективную работу ВЭС, их должно быть не менее 20-30 шт. «Утка» – это и есть тот поплавок. Он был разработан инженером Стивеном Солтером. Еще изобретение называют эдинбургской «уткой». Как работает волновая электростанция такого типа:
- Волны заставляют поплавки двигаться, но за счет своего веса они возвращаются в начальное положение.
- Это заставляет прийти в движение и насосы внутри вала. Предварительно их заполняют специально подготовленной водой.
- Далее приводятся в действие турбины между поплавками.
- Вырабатывается энергия, которую передают на берег по кабелю на дне.
Подобные системы уже работают. Они расположены у западных берегов Британских островов для обеспечения электроэнергией Великобритании. Мощность установки составляет 45 тыс. кВт. Ее вырабатывают 20-30 поплавков диаметром 15 м на валу длиной 1,2 км.
Выгодно ли использовать энергию волн
Энергия волн считается возобновляемой, к тому же огромный потенциал океана может дать около 20% от всей потребной электроэнергии. Развитие этого направления выгодно со всех сторон, поскольку природные ресурсы начинают активно истощаться, а уголь, нефть и газ рано или поздно закончатся.
Советуем изучить — Удельное электрическое сопротивление
Атомная энергетика не сможет решить всех будущих проблем. В связи с потенциальной опасностью и отсутствием гарантированной защиты, АЭС развиваются не так активно, как это необходимо.
К положительным качествам ВЭС можно отнести следующие:
- Безопасная продолжительная эксплуатация без нарушений экологии.
- Станции заодно гасят волны возле портов и берегов, выполняя функции защиты.
- Волны являются возобновляемым источником энергии.
- Низкая себестоимость полученной электроэнергии.
Минусами волновых установок считаются:
- Небольшая мощность большинства установок.
- Отсутствие стабильности в работе под влиянием погоды и природных условий.
- Возможная опасность для рыболовецких и других судов.
Геотермальные электростанции (ГТЭС)
Ветряные электростанции
Газотурбинная электростанция (ГТЭС)
Тепловые электростанции (ТЭС)
Приливные электростанции (ПЭС)
Гидроаккумулирующая электростанция (ГАЭС)
Буй-генератор
Ocean Power Technologies (OPT) – инжиниринговая компания из Шотландии – представила PowerBuoy PB150. Это огромный буй длиной 42 м, удерживаемый одиннадцатиметровым поплавком и якорной системой. Мощность одной станции 150 кВт.
Агрегат способен преобразовывать в электроэнергию вертикальные колебания. Погруженная часть буя-генератора зафиксирована на дне якорной системой. Поплавок перемещается по вертикали в унисон колебанию морских вод – он закреплен на подвижном штоке. Шток – часть линейного генератора, который во время прохождения обмотки статора вырабатывает электричество.
Конструкция оснащена системой датчиков, благодаря которой можно вручную адаптировать ход штока согласно силе, высоте и частоте волн, добиваясь наиболее рационального режима работы оборудования. Во избежание аварий в периоды сильных штормов шток поплавка блокируется автоматически.
К месту дислокации агрегат доставляют буксиры. Несколько подобных буев, установленные рядом, использующие общую якорную систему и единый силовой контур, образуют волновую ферму. Для установки системы мощностью 10МВт необходимо 0,125 квадратных км водной поверхности. Первый такой буй разместили в 33 морских милях от Инвергордона (Шотландия). Анализ среды вблизи функционирующего генератора показал, что он экологически нейтрален.
Типы волновых электростанций
Все объекты такого типа действуют по единому неизменному принципу. Конструкторами только ведется работа над модернизацией архитектуры камеры, чтобы помогает достигать предельного сжатия воздуха во внутренней части. Благодаря усовершенствованной камере меняется объем и геометрия – на это оказывает влияние состояние акватории. Такой процесс в совокупности позволяет избежать перепадов мощности, когда происходит снижение волновой высоты, а также защищает все оборудование.
Функционирующие по принципу качения
Главная задача таких поплавковых сооружений – задействование волновой волн в момент поверхностного качения, то есть, они способны раскачивать поплавки.
Морские змеи
Они отличаются секционным составом и формой цилиндра. Обычно данное оборудование соединено с помощью шарниров. Они нередко находятся в полузатопленном положении. Мощность одного объекта достигает двадцати одного мегаватта, что вполне хватит для поступления электричества в пятнадцать тысяч домов.
Коккерельский плот
В данном случае происходит перемещение секций на шарнирах в отношении друг друга. Насосы, оснащенные генераторами, работают за счет колебаний. Плот, в котором три секции, способен выработать до двух тысяч киловатт. Показатель эффективности достигает сорок пять процентов.
Солтерская утка
Поплавская электростанция состоит из многих поплавков, находящихся на одном валу. Чтобы она функционировала правильно, их количество должно быть как минимум от двадцати до тридцати. Разработка «Утки» принадлежит инженеру Стивену Солтеру.
Энергия морских и океанских течений
Мощнейшие течения наделены энергией. В настоящее время получают энергию со скоростным показателем потока от одного метра в секунду.
Про кинетическую волновую энергию
Количество волновой энергии слишком большое, поэтому на шотландском побережье она сумела сдвинуть каменный блок, который весил 1350 тонн. На показатель мощности влияет длина волны. Например, когда она будет равняться десяти милям, то за десять секунд выработается тридцать пять тысяч лошадиных сил.
Воспользоваться энергией можно по-разному:
- Волна пройдет сквозь полую камеру. Это необходимо, чтобы вытолкнуть весь воздух и заставить турбину двигаться.
- Энергия будет направлена в трубу, где происходит вращение турбинных лопастей и запускается генератор за счет вращения волн.
Буй генератор
Оборудование в виде сорока двух метрового буя. Для фиксации буя на дне используются якоря, на поверхности – одиннадцатиметровый поплавок. Последний совершает вращательные движения за колебанием вод. Его закрепляют с помощью подвижного штока. Речь идет о части генератора, который когда проходит обмотку статора, осуществляет генерирование электричества. Именно благодаря датчикам появилась возможность держать под контролем ход штока. На процесс также влияет частота, сила волн и их высота. Если случится сильнейший шторм, шток заблокируется автоматическим способом. Это позволит избежать аварийной ситуации.
Принцип действия классической волновой электростанции
Осциллирующая водяная колонна с воздушной турбиной Уэллса являет собой классический, наиболее проработанный вид волновой электростанции. Аналогичное оборудование успешно функционирует как в море, так и в прибрежной зоне.
Принцип работы одинаков и для стационарных, и для плавучих моделей. Волной в, наполовину погруженной в воду, камере поднимается уровень воды. Благодаря заполнению внутреннего объема агрегата водой, воздух, находящийся внутри, под давлением выдавливается из сосуда. Образовавшиеся воздушные потоки пропускаются через лопасти реверсивной турбины низкого давления Уэллса. Когда возникает откат воды, воздух возвращается в камеру, минуя все те же турбинные лопатки. Уэллс добился сохранения направления вращения вала турбины вне зависимости от направления движения волны, что обеспечивает непрерывность передачи крутящего момента на вал генератора.
Турбина Алана Артура Уэллса избавлена от сложных механизмов измерения шага, а также систем клапанов. Агрегат имеет симметричное сечение и сравнительно большой угол атаки лопастей. В целом механизм характеризуется:
- малым отношением скорости вращения к скорости потока воздуха;
- высоким коэффициентом лобового сопротивления;
- периодическими провалами мощности;
- КПД на уровне 40-70%;
- шумностью – издаваемые им, звуки сопоставимы со звучанием огромного органа.
Совершенствование классической модели
Принцип действия подобных агрегатов сохраняется неизменным. Конструкторы пытаются изменить архитектуру камеры, чтобы добиться максимального сжатия воздушной массы внутри нее. Усовершенствованная модель камеры позволяет изменять ее объем и геометрию в зависимости от состояния акватории.
Эффективность этой идеи доказали и теоретически, и практически. В итоге удалось избавиться от перепадов мощности станции, обусловленных падением высоты волны, и защитить оборудование от чрезмерных нагрузок и разрушения во время штормов.
Такая станция с «дышащей» камерой функционирует в Атлантике у португальских берегов. Ее мощности в 750 кВт достаточно для обеспечения электричеством около 1000 семей. Там планируется создать огромный прибрежный генерирующий каскад.
В перспективе плавучие волновые станции этого типа будут строить там, где функционируют ветровые фермы, используя единую якорную систему для электростанций обоих видов.
Мощности промышленных станций
Промышленные ВЭС имеют весьма высокую мощность, способную обеспечивать крупные населенные пункты или регионы. Например, ВЭС «Ганьсу» в Китае имеет 7965 мВт, «Энеркон Е-126» выдает 7,58 мВт, и это еще не предел.
Следует сразу же оговориться, что речь идет о лидерах в ветроэнергетике, другие модели вырабатывают намного меньше энергии. Тем не менее, объединенные в крупные станции, ветряки способны на производство вполне достаточного количества электроэнергии. Объединенные комплексы вырабатывают суммарную мощность в 400-500 мВт, что вполне может сравниться с производительностью ГЭС.
Выгодно ли использовать энергию волн
Энергия волн считается возобновляемой, к тому же огромный потенциал океана может дать около 20% от всей потребной электроэнергии. Развитие этого направления выгодно со всех сторон, поскольку природные ресурсы начинают активно истощаться, а уголь, нефть и газ рано или поздно закончатся.
Советуем изучить — Условия эксплуатации электродвигателей
Атомная энергетика не сможет решить всех будущих проблем. В связи с потенциальной опасностью и отсутствием гарантированной защиты, АЭС развиваются не так активно, как это необходимо.
К положительным качествам ВЭС можно отнести следующие:
- Безопасная продолжительная эксплуатация без нарушений экологии.
- Станции заодно гасят волны возле портов и берегов, выполняя функции защиты.
- Волны являются возобновляемым источником энергии.
- Низкая себестоимость полученной электроэнергии.
Минусами волновых установок считаются:
- Небольшая мощность большинства установок.
- Отсутствие стабильности в работе под влиянием погоды и природных условий.
- Возможная опасность для рыболовецких и других судов.
Геотермальные электростанции (ГТЭС)
Ветряные электростанции
Газотурбинная электростанция (ГТЭС)
Тепловые электростанции (ТЭС)
Приливные электростанции (ПЭС)
Гидроаккумулирующая электростанция (ГАЭС)
Почему это выгодно?
Ни для кого не секрет, что природные богатства находятся на грани истощения. Запасы угля, нефти и газа – основных энергетических источников – подходят к концу. По самым оптимистичным прогнозам ученых, запасов хватит для 150-300 лет жизни. Атомная энергетика тоже не оправдала ожиданий. Большая мощность и производительность окупают затраты на строительство, эксплуатацию, но проблемы захоронения отходов и нанесения ущерба окружающей среде скоро заставят отказаться и от них. По этим причинам ученые ищут новые альтернативные источники энергии. Сейчас уже действуют ветровые и солнечные электростанции. Но при всех своих достоинствах они имеют существенный недостаток – низкий КПД. Удовлетворить потребности всего населения не удастся. Поэтому необходимы новые решения.
Для выработки электричества волновая электростанция использует кинетическую энергию волн. По самым скромным подсчетам, этот потенциал оценивается в 2 млн МВт, что сравнимо с 1000 работающих на полную мощность атомных электростанций, а на один метр фронта волны приходится около 75 кВт/м. При этом не наблюдается абсолютно никакого вредного воздействия на окружающую среду.
Минусы
- Громоздкость конструкции. Самые легкие вертикальные ветряки весят не менее 300 кг вместе со стойкой.
- Низкая эффективность по сравнению с горизонтальным.
- Шумность. Ветряк издает шум от лопастей во время работы.
Видео. Геликоидный ветрогенератор
В ролике наглядно показана работа геликоидного ветряка, установленного на специальной мачте
Медленно, но уверенно, Российская Федерация осваивает получение электроэнергии из альтернативных источников. Сейчас в этом направлении мы значительно уступаем многим другим странам, но, например, некоторые ветряные электростанции в России могут похвастаться высокими показателями выработки.
По словам председателя Российской ассоциации ветроиндустрии, на 2021 год в нашей стране все ветропарки имеют мощность всего 1375 МВт, что составляет 0,56% от мощности всей энергосистемы. Хотя уже к 2024 году есть планы поднять этот показатель до 3380 МВт.
В основном потребность в ветряных электростанциях имеется в удалённых регионах, которые не подключены к централизованному энергоснабжению. Но в целом в России очень слабо используется эта отрасль ветроэнергетики.
Среди основных причин:
- Энергетическая избыточность. Традиционные электростанции вполне справляются со своей задачей и Россия производит электроэнергию с избытком, который можно продавать другим странам.
- Экономическая нецелесообразность. Этот пункт вытекает из предыдущего: у нас есть электростанции, которые удовлетворяют потребности населения, поэтому тратить средства на дорогие и менее эффективные проекты просто незачем.
- Низкая поддержка со стороны государства. Субсидирование ветроэнергетики у нас ничтожно мало, если сравнивать с европейскими странами и США. Однако последние инициативы должны помочь в развитии отрасли.
В таблицу вынесли 10 мощнейших объектов по состоянию на 2021 год.
№ | Название | Где расположена/координаты | Ввод в эксплуатацию, год | Мощность, МВт |
---|---|---|---|---|
1 | Кочубеевская ВЭС | Ставропольский край / 44.730150, 41.951294 | 2020 | 210 |
2 | Каменско-Красносулинская ВЭС | Ростовская область / 48.184859, 40.284119 | 2020 | 198 |
3 | Адыгейская ВЭС | Республика Адыгея / 44.938675, 40.080799 | 2020 | 150 |
4 | ВЭС Гуково-1 | Ростовская область / 48.094133, 39.956760 | 2020 | 98,8 |
5 | Азовская ВЭС | Ростовская область / 46.944637, 38.875637 | 2021 | 90,09 |
6 | Береговая ВЭС | Краснодарский Край / 45.367524, 36.780510 | 2018 | 90 |
7 | Ульяновская ВЭС-2 | Ульяновская область / 54.300098 48.586865 | 2019 | 50,4 |
8 | Ульяновская (Симбирская) ВЭС | Ульяновская область / 54.274246, 48.585148 | 2017 | 35 |
9 | Останинская ВЭС | Республика Крым / 45.350245, 35.996361 | 2011 | 25 |
10 | Наримановская ВЭС | Астраханская область / 46.682598, 47.842026 | 2018 | 24 |
10 мощнейших ВЭС РФ на карте:
Если проследить даты запуска приведённых электростанций, то очевидно, что подавляющее большинство из них были запущены в последние годы. Это одновременно и обнадёживает, и наталкивает на выводы, что только сейчас ветроэнергетика начала активный рост.
На фото ниже Кочубеевская ВЭС — самая мощная ветряная электростанция в России на момент написания статьи. Она была запущена в декабре 2020 года в Ставропольском крае и включает в себя 84 ветроэнергетических установки по 2,5 МВт каждая. С общей мощностью 210 МВт планируется, что в год Кочубеевская ВЭС будет вырабатывать порядка 597 млн кВт*ч.
Кочубеевская ВЭС | Фото: www.instagram.com/sveta4ika/
Ввиду благоприятных климатических условий большая концентрация ветряных электростанций в Республике Крым, однако большинство из них — это проекты конца 90-х и начала 2000-х, поэтому мощность несопоставима с современными объектами в регионах РФ. На фото ниже Останинская ВЭС — мощнейшая в Крыму ветряная электростанция.
Останинская ВЭС
Заинтересованность в развитии этого направления имеется, но острой необходимости в этом нет, ведь традиционная электродобывающая промышленность у нас имеет высокий уровень развития.
Регулярно поднимается вопрос поддержки альтернативной энергетики. Так, стратегия развития Российской энергетики предполагает увеличение доли выработки ветроэнергетики до 3,3 ГВт к 2024 году.
Долгое время в качестве основных источников энергии использовались уголь, нефть и газ. В связи с уменьшением объема этих ресурсов большой толчок в развитии получила альтернативная энергетика. Примером служат волновые электростанции. Они помогают использовать колоссальную энергию океанов, морей и рек. Существуют разные типы волновых электростанций (ВЭС), но в основе каждой лежит преобразование механического действия волн.
Строительство ВЭС
Во время строительства ВЭС необходимо учитывать следующие факторы получения электрической энергии:
- Требуется брать в расчет показатели кинетической энергии волн. При попадании в трубу волновой электростанции вода оказывает давление на расположенную внутри, которая приводится в движение и вырабатывает энергию. Также данный процесс может осуществляться с помощью давления, которое оказывается водой, выталкивающей воздух из полой камеры.
- Энергия получаемого от качения поверхности. При подобных случаях на поверхность воды устанавливаются специальные датчики, называемые поплавками. Они отслеживают профили каждой волны и преобразовывают качание в электрическую энергию.
К счастью схема ПВЭС проста, поэтому на строительство и запуск не приходится тратить больших средств, в то время как КПД приливной электростанции позволяет использовать ее даже для крупных городов побережья.
Заключение
Конечно, как и другие альтернативные способы добычи электрической энергии, данный метод не до конца изучен и разработан, но процесс идет очень хорошими темпами. На сегодняшний день даже преобразование солнечной энергии не может на равных конкурировать с углеводородными источниками, но следует продолжать исследовать все альтернативные методы. Россия не так давно стала разрабатывать проект получения энергии из ВЭС, но у страны есть большой потенциал и возможности, которые требуется лишь реализовать на все 100%.
История
- 1799 год. Первая заявка на патент волновой мельницы. Заявка подана в Париже, Франция.
- 1880 — 1900 год. Многочисленные попытки использовать энергию волн для получения электричества.
- 1973 год. Увеличение интереса к волновой энергии после нефтяного кризиса.
- 2008 год. Первая волновая электростанция вошла в коммерческую эксплуатацию.
Первая волновая электростанция
Первая волновая электростанция расположена в районе Агусадора, Португалия, на расстоянии 5 километров от берега. Была официально открыта 23 сентября 2008 года португальским министром экономики. Мощность данной электростанции составляет 2,25 МВт, этого хватает для обеспечения электроэнергией примерно 1600 домов. Первоначально предполагалось, что станция войдёт в эксплуатацию в 2006 году, но развёртывание электростанции произошло на 2 года позже планируемого срока. Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 году заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции в Португалии. Стоимость контракта составила 8 миллионов евро.
Параметры электростанции
Электростанция состоит из 3-х устройств под названием Pelamis P-750 (англ.)русск.. Это большие плавающие объекты змеевидного типа, размер каждого:
- длина 120 метров,
- диаметр 3,5 метра,
- вес 750 тонн.
Мощность одного такого конвертера составляет 750 КВт.
Удельные характеристики: мощность 1 кВт/тонну и 650 Вт на м³ конструкции. В электричество превращается примерно 1% энергии волнения. [источник не указан 2933 дня]
Устройство и принцип действия
Pelamis P-750 состоит из секций, между секциями закреплены гидравлические поршни. Внутри каждой секции также есть гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их изгибаться, за что конструкции стали называть «морскими змеями» («sea-snake»). Движение этих соединений приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение масло. Масло проходит через гидравлические двигатели. Эти гидравлические двигатели приводят в движение электрические генераторы, которые производят электроэнергию.
Перспективы
В дальнейшем планируется добавить к трём существующем конвертерам ещё 25, что увеличит мощность электростанции с 2,25 МВт до 21 МВт. Такой мощности хватит для обеспечения электроэнергией 15 000 домов и снизит выбросы углекислого газа на 60 000 тонн в год.
Через два месяца на электростанции возникли неполадки, в результате она была демонтирована.
Российские разработки
На территории Москвы может быть начато строительства производственного научно-исследовательского предприятия, которое будет разрабатывать модуль поплавковой волновой электростанции. Инвестор планирует строительство опытно-промышленного предприятия, включающего в себя производственную научно-исследовательскую лабораторию.
Учёные УрФУ разработали мобильную волновую электростанцию. В 2014 г. её испытания начались в бухте Витязь на Морской экспериментальной станции «Мыс Шульца» Тихоокеанского океанологического института им В.И. Ильчева ДВО РАН, расположенной на полуострове Гамова (Приморье).