Содержание:
Шаговый двигатель против двигателя постоянного тока
Принцип, используемый в двигателях, является одним из аспектов принципа индукции. Закон гласит, что если заряд движется в магнитном поле, на него действует сила в направлении, перпендикулярном как скорости заряда, так и магнитному полю. Тот же принцип применяется к потоку заряда, тогда это ток и проводник, по которому течет ток. Направление этой силы задается правилом правой руки Флеминга. Простой результат этого явления состоит в том, что если ток течет по проводнику в магнитном поле, проводник перемещается. Все моторы работают по этому принципу.
Подробнее о двигателе постоянного тока
Двигатель постоянного тока питается от источников питания постоянного тока, и используются два типа двигателей постоянного тока. Это щеточный электродвигатель постоянного тока и бесщеточный электродвигатель постоянного тока.
В щеточных двигателях щетки используются для поддержания электрического соединения с обмоткой ротора, а внутренняя коммутация изменяет полярность электромагнита, чтобы поддерживать вращательное движение. В двигателях постоянного тока в качестве статоров используются постоянные или электромагниты. Все катушки ротора соединены последовательно, и каждый переход соединен с стержнем коммутатора, и каждая катушка под полюсами способствует созданию крутящего момента.
В небольших двигателях постоянного тока количество обмоток невелико, а в качестве статора используются два постоянных магнита. Когда требуется более высокий крутящий момент, количество обмоток и сила магнита увеличиваются.
Второй тип — это бесщеточные двигатели, которые имеют постоянные магниты, поскольку ротор и электромагниты расположены в роторе. Бесщеточный двигатель постоянного тока (BLDC) имеет много преимуществ по сравнению с щеточным двигателем постоянного тока, такие как лучшая надежность, более длительный срок службы (отсутствие эрозии щеток и коллектора), больший крутящий момент на ватт (повышенная эффективность) и больший крутящий момент на вес, общее снижение электромагнитных помех (EMI) , а также снижение шума и устранение ионизирующих искр от коллектора. Транзистор высокой мощности заряжается и приводит в движение электромагниты. Эти типы двигателей обычно используются в охлаждающих вентиляторах компьютеров.
Подробнее о шаговом двигателе
Шаговый двигатель (или шаговый двигатель) — это бесщеточный электродвигатель постоянного тока, в котором полное вращение ротора разделено на ряд равных шагов. Затем положение двигателя можно контролировать, удерживая ротор на одном из этих этапов. Без какого-либо датчика обратной связи (контроллер с разомкнутым контуром) он не имеет обратной связи как серводвигатель.
Шаговые двигатели имеют несколько выступающих электромагнитов, расположенных вокруг куска железа в форме центральной шестерни. Электромагниты получают питание от внешней цепи управления, например микроконтроллера. Чтобы заставить вал двигателя вращаться, сначала на один из электромагнитов подается мощность, которая заставляет зубья шестерни магнитно притягиваться к зубцам электромагнита и вращается в это положение. Когда зубья шестерни совмещены с первым электромагнитом, зубья смещены относительно следующего электромагнита на небольшой угол.
Для перемещения ротора включается следующий электромагнит, выключая остальные. Этот процесс повторяется для непрерывного вращения. Каждый из этих небольших поворотов называется «шагом». Целое число из нескольких шагов завершает цикл. Используя эти шаги для поворота двигателя, можно управлять двигателем для получения точного угла. Есть четыре основных типа шаговых двигателей; Шаговый двигатель с постоянным магнитом, гибридный синхронный шаговый двигатель, шаговый двигатель с переменным сопротивлением и шаговый двигатель типа Лаве
Шаговые двигатели используются в системах позиционирования с контролем движения.
Двигатель постоянного тока против шагового двигателя
• Двигатели постоянного тока используют источники питания постоянного тока и делятся на два основных класса; щеточный и бесщеточный двигатель постоянного тока, тогда как шаговый двигатель — это бесщеточный двигатель постоянного тока с особыми характеристиками.
• Обычный двигатель постоянного тока (за исключением подключенных к сервомеханизмам) не может управлять положением ротора, в то время как шаговый двигатель может управлять положением ротора.
• Шагами шагового двигателя необходимо управлять с помощью устройства управления, такого как микроконтроллер, в то время как обычные двигатели постоянного тока не требуют таких внешних входов для работы.
Виды и особенности электродвигателей
Наш материал будет посвящен электроприводу — одному из самых старых устройств, разработка которого началась еще в середине XIX столетия. Впрочем, несмотря на прошедшие века, эти устройства вполне комфортно чувствуют себя и в первой четверти 21 века. Электрические двигатели популярны, востребованы, а их мощностные спецификации совершенствуются. Мы не будем рассказывать о том, как сделать электродвигатель, но давайте узнаем, как устроены электромоторы, какими они бывают и как их подобрать, по каким техническим спецификациям их классифицируют и где они нашли применение.
Устройство и принцип работы электродвигателя
Электрический двигатель — изделие, которое преобразует электроэнергию в механическую. Достигается это при помощи работы внутренних механизмов электромотора. Необходимо отметить, что движок — это главная деталь привода.
Есть определенные рабочие режимы электрического привода, когда мотор выполняет функцию преобразователя электроэнергии (другими словами — выступает в роли электрогенератора).
В зависимости от спецификаций механики движения, выделяют различные виды электродвигателей. Среди них
- вращающиеся;
- линейные и другие типы.
Подробно вопросы классификации мы рассмотрим в соответствующем разделе, но внесем одну ясность — зачастую под понятием “электрический двигатель” рассматриваются именно вращающиеся модели, получившие наибольшее распространение и, как следствие, применения в самых разных сферах, отраслях.
схема электродвигателя
По виду создаваемого механического движения модели бывают вращающиеся, линейные и т.д. Под электроприводами очень часто подразумевают именно вращающиеся, так как они получили самое большое распространение и, как следствие, применение, чем другие виды двигателей.
Из чего состоит электродвигатель
Что понять, как работает электродвигатель мы должны разобраться, как устроен электродвигатель, из чего он состоит, узнать плюсы и минусы изделий. Главными деталями (а мы рассматриваем именно вращающийся электромотор), обеспечивающими плавный пуск двигателя, являются
- статор — неподвижный компонент;
- ротор — механизм, отвечающий за вращательные движения.
Эти основные элементы присущи всем моделям вне зависимости от их типа.
Чаще всего компании—производители помещают ротор внутри статора, для достижения оптимального КПД электродвигателя. Если же движок имеет противоположную состав конструкции, подразумевающей расположение подвижного компонента снаружи, то такие изделия являются асинхронными или обращенными электродвигателями с короткозамкнутым ротором.
схема электропривода
Как работает электродвигатель
Обратимся к физике и рассмотрим принцип функционирования электропривода. Так, по закону Ампера мы имеем проводник (I). Он находится в магнитном поле, соответственно, на него оказывает действие сила (F). В том случае, если проводник (I) согнут в специальную рамку, в магнитном поле наблюдается следующая картинана обе стороны рамки, расположенные под углом в 90 градусов, оказывают воздействие разнонаправленные силы (F), которые и создают вращательные движения.
Для обеспечения постоянного момента вращения на якорях движков устанавливают специальные витки. Что касается магнитного поля, то оно достигается за счет использование магнитов (также могут применяться электромагниты — провода, которыми обматывают сердечник) из—за чего энергия, воздействующая на рамки проводника, индуцирует электричество, что способствует высокому КПД движка.
схема электромотора
Преимущества и недостатки
Перед применением шагового двигателя необходимо изучить его плюсы и минусы. По ним проще судить об актуальности применения оборудования для решения задач разной сложности.
Плюсы:
- Точность. При подаче напряжения на определенные обмотки ротор поворачивается на строго определенный угол.
- Продолжительный срок службы. Если следить за оборудование, проводить периодические проверки и восстановительные процедуры, шаговый двигатель способен прослужить не меньше станка.
- Часто применяется в качестве более дешевой альтернативы сервопривода. Его часто применяют для автоматизации разного рода узлов.
- Стабильность. ШД работает при разных нагрузках и не боится колебания этого параметра.
- Легкость в применении. Управление шаговым двигателем не требует специальных знаний. Разобраться в принципе действия и правилах использования может даже новичок.
- Отличные характеристики: поддержка максимального момента вращения (даже при низкой скорости), четкость фиксации после остановки.
- Простота ремонта. Имеет простую конструкцию, поэтому с обслуживанием и восстановлением не возникает трудностей.
Минусы:
- Низкий момент. ШД не могут похвастаться достаточным моментом при повышении скорости вращения. Единственный выход — улучшение динамических параметров с помощью специальных ШИМ-драйверов.
- Вибрации. Из-за дискретности шага возникают вибрации, которые неизбежно приводят к уменьшению момента вращения и появлению резонансов в системе.
- Риск нарушения позиционирования. Изменение этого параметра возможно при повышении нагрузки выше допустимого параметра.
- Небольшая эффективность. Шаговый двигатель использует много энергии даже при минимальной нагрузке.
- Трудности с набором скорости. Агрегат с трудом набирает обороты после мгновенной перегрузки.
- Риск «проскальзывания» ротора. Это известная проблема, проявляющаяся в случае повышения нагрузки выше допустимого значения. Для ее решения можно установить датчик или увеличить мощность мотора.
Это не исчерпывающий список слабых и сильных характеристик шагового механизма, но достаточный для принятия решения.
Переключение и контроль двигателя постоянного тока
Небольшие двигатели постоянного тока могут быть включены «Вкл» или выключены «Выкл» с помощью переключателей, реле, транзисторов или МОП-транзисторов, причем простейшей формой управления двигателем является «линейное» управление. Схема этого типа использует биполярный транзистор в качестве переключателя (транзистор Дарлингтона также может использоваться, если требуется более высокий номинальный ток) для управления двигателем от одного источника питания.
Изменяя величину тока базы, протекающего в транзистор, можно управлять скоростью двигателя, например, если транзистор включен наполовину, тогда только половина напряжения питания поступает на двигатель. Если транзистор включен полностью (насыщен), то все напряжение питания поступает на двигатель и вращается быстрее. Затем для этого линейного типа управления мощность постоянно подается на двигатель, как показано ниже.
Принцип работы электродвигателя переменного тока
Способ 2. Вращается магнитный поток, т.е. магнитное поле.
Вращающееся магнитное поле получают с помощью переменного трёхфазного тока. Вот есть статор.
Рис. 7
Между ними как видно на Рис. 7 120 градусов, электрических градусов.
Эти три фазы укладывают в статор специальным образом, чтобы они геометрически были повернуты друг к дружке на 120°.
Рис. 8
И тогда при подаче трёхфазного питания получается само собой за счёт складывания магнитных потоков от трёх обмоток вращающееся магнитное поле.
Рис. 9 Вращающееся магнитное поле
Далее вращающееся магнитное поле влияет силой Ампера на нашу рамку и она вращается.
Но здесь есть тоже различия, два разных способа.
Способ 2а. Рамка запитывается (синхронный двигатель).
Подаём значит на рамку напряжение (постоянное), рамка выставляется по магнитному полю. Помните рис.1 из самого начала? Вот так рамка и становится.
Рис. 10 (Рис.1)
Но поле магнитное у нас тут вращается, а не просто так висит. Рамка чего будет делать? Тоже будет вращаться, следуя за магнитным полем.
Они (рамка и поле) вращаются с одинаковой частотой, или синхронно, поэтому такие двигатели называются синхронными двигателями.
Способ 2б. Рамка не запитывается (асинхронный двигатель).
Фишка в том, что рамка не запитывается, совсем не запитывается. Просто проволока такая замкнутая.
Когда мы начинаем вращать магнитное поле, по законам электромагнетизма в рамке наводится ток. От этого тока и магнитного поля получается сила Ампера. Но сила Ампера будет возникать только если рамка движется относительно магнитного поля (известная история с опытами Ампера и его походами в соседнюю комнату).
Так что рамка всегда будет отставать от магнитного поля. А то, если она его вдруг почему-то догонит, то пропадёт наводка от поля, пропадёт ток, пропадёт сила Ампера и всё вообще пропадёт. То есть, в асинхронном двигателе рамка всегда отстаёт от поля и частота у них значит разная, то есть вращаются они асинхронно, поэтому и двигатель называется асинхронным.
Классификация электродвигателей
Вращающийся электродвигатель | ||||
---|---|---|---|---|
Само коммутируемый | Внешне коммутируемый | |||
С механической коммутацией (коллекторный) | С электронной коммутацией1 (вентильный2, 3) | Асинхронный электродвигатель | Синхронный электродвигатель | |
Переменного тока | Постоянного тока | Переменного тока4 | Переменного тока | |
|
|
|
|
|
Простая электроника | Выпрямители,транзисторы | Более сложнаяэлектроника | Сложная электроника (ЧП) |
Примечание:
- Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
- Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
- Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
- Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
- Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
Аббревиатура:
- КДПТ — коллекторный двигатель постоянного тока
- БДПТ — бесколлекторный двигатель постоянного тока
- ЭП — электрический преобразователь
- ДПР — датчик положения ротора
- ВРД — вентильный реактивный двигатель
- АДКР —
- АДФР —
- СДОВ — синхронный двигатель с обмоткой возбуждения
- СДПМ — синхронный двигатель с постоянными магнитами
- СДПМП —
- СДПМВ —
- СРД — синхронный реактивный двигатель
- ПМ — постоянные магниты
- ЧП — частотный преобразователь
Принцип работы устройства
В составе электродвигателя переменного тока присутствуют неподвижные и подвижные части. К первым относят:
- статор;
- индуктор.
Статор находит применение для машин синхронного и асинхронного типа. Индуктор эксплуатируется в машинах постоянного тока. Подвижная часть состоит из ротора и якоря. Первый применяют для синхронных и асинхронных устройств, тогда как якорь используется для оборудования с постоянными показателями. Функция индуктора лежит на двигателях небольшой мощности. Здесь нередко используют постоянные магниты.
Говоря о том, как устроен электродвигатель, необходимо определить, к какому классу оборудования относится конкретная модель. В конструкции асинхронного двигателя ротор бывает:
- короткозамкнутым;
- фазным, то есть с обмоткой.
Последний тип используется, если требуется уменьшить пусковой ток и отрегулировать частоту вращения асинхронного электродвигателя. Обычно речь идет о крановых электродвигателях, повсеместно используемых в крановых установках.
Кран обладает подвижностью и применяется в машинах постоянного тока. Это может быть генератор либо двигатель, а также универсальный двигатель, функционирующие по тому же принципу. Его используют в электроинструменте. Фактически универсальный двигатель — это тот же двигатель с постоянными показателями, в котором происходит последовательное возбуждение. Отличие касается лишь расчётов обмоток. Здесь отсутствует реактивное сопротивление. Оно бывает:
- емкостным;
- индуктивным.
Что положено в основу
Вскоре после того как было обнаружено взаимодействие магнита и проводника с электрическим током, исследователи догадались усилить электромагнитное поле, создаваемое проводником, придав последнему специальную форму. Так появился виток и рамка как разновидность витка. Рамка в поле постоянного магнита обнаружила свойство стремиться занимать только одно положение. Она всегда устанавливается своей плоскостью поперек силовых линий магнита. Если рамка может вращаться на оси, то при наличии тока она будет поворачиваться вокруг этой оси до тех пор, пока не станет поперек силовых линий магнита.
Рамка с током в поле постоянного магнита
В процессе поворота ток в рамке должен течь непрерывно. До недавних пор, пока не появились полупроводниковые приборы достаточной мощности, единственным решением этого были скользящие контакты — щетки. Они скользят по контактам рамки, которые в виде пластин размещаются на поверхности цилиндра, расположенного коаксиально с рамкой. Коллектор — так называется этот цилиндр с контактами. Чтобы получить непрерывное вращение несколько рамок, и коллектор располагают на общей оси. Тогда станет возможно преодолеть устойчивое состояние каждой рамки в ее крайнем положении.
Когда рамок становится достаточно много, коллекторная сборка контактов получается все более многочисленной, а контакты узкими, в результате чего количество их увеличивается на 2 с каждой новой рамкой. Посчитав количество пластин и разделив полученное число на 2, можно узнать количество рамок в конструкциях движков. Чтобы взаимодействие рамки с магнитом в электродвигателях получалось наиболее эффективным, все внутреннее пространство заполняется металлом — ферромагнетиком. Таким способом получаются роторы, которыми снабжены электродвигатели постоянного тока.
Устройство и описание ДПТ
Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.
Самый простой ДПТ состоит из следующих основных узлов:
- Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
- Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
- Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
- Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.
Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока. Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.
Статор (индуктор)
В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.
Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:
- с независимым возбуждением обмоток;
- соединение параллельно обмоткам якоря;
- варианты с последовательным возбуждением катушек ротора и статора;
- смешанное подсоединение.
Схемы подключения наглядно видно на рисунке 2.
Рисунок 2. Схемы подключения обмоток статора ДПТ
У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.
Ротор (якорь)
В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.
В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.
Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.
Рисунок 3. Ротор с тремя обмотками
Рисунок 4. Якорь со многими обмотками
Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.
Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.
Рисунок 5. Схема электромотора с многообмоточным якорем
Коллектор
Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.
Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.
В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.
Бесколлекторный электродвигатель постоянного тока. Общие сведения и устройство прибора
Контроллеры электродвигателей такого типа зачастую питаются благодаря постоянному напряжению, отчего и получили своё название. В англоязычной технической литературе вентильный электродвигатель называют PMSM или BLDC.
Бесколлекторный электродвигатель был создан в первую очередь для оптимизации любого электродвигателя постоянного тока в целом. К исполнительному механизму такого устройства (особенно к высокооборотному микроприводу с точным позиционированием) ставились очень высокие требования.
Это, пожалуй, и обусловило использование таких специфических приборов постоянного тока, бесколлекторные трёхфазные двигатели, также называемые БДПТ. По своей конструкции они практически идентичны синхронным двигателям переменного тока, где вращение магнитного ротора происходит в обычном шихтованном статоре при наличии трёхфазных обмоток, а количество оборотов зависит напряжения и нагрузок статора. Исходя из определённых координат ротора, происходит переключение разных обмоток статора.
обмотки статора выполняют функцию фиксирующего элемента
Если одна из обмоток будет выключена, то будет измеряться и в дальнейшем обрабатываться тот сигнал, который был наведён, однако, такой принцип работы невозможен без профессора обработки сигналов. А вот для реверса или торможения такого электродвигателя мостовая схема не нужна – достаточно будет подачи в обратной последовательности управляющих импульсов на обмотки статора.
В ВД (вентильном двигателе) индуктор в виде постоянного магнита расположен на роторе, а якорная обмотка – на статоре. Исходя из положения ротора, формируется напряжение питания всех обмоток электродвигателя. При использовании в таких конструкциях коллектора, его функцию будет выполнять в вентильном двигателе полупроводниковый коммутатор.
Основное отличие синхронного и вентильного двигателей заключается в самосинхронизации последнего при помощи ДПР, что обусловливает пропорциональную частоту вращения ротора и поля.
Чаще всего бесколлекторный электродвигатель постоянного тока находит применение в следующих сферах:
- морозильное или холодильное оборудование (компрессоры);
- электропривод;
- системы нагрева воздуха, его кондиционирования или вентиляции.
Статор
Это устройство имеет классическую конструкцию и напоминает такой же прибор асинхронной машины. В состав входит сердечник из медной обмотки (уложенной по периметру в пазы), определяющей количество фаз, и корпус. Обычно синусной и косинусной фаз достаточно для вращения и самозапуска, однако, часто вентильный двигатель создают трёхфазным и даже четырёхфазным.
Электродвигатели с обратной электродвижущей силой по типу укладки витков на обмотке статора делятся на два типа:
- синусоидальной формы;
- трапецеидальной формы.
В соответствующих видах двигателя электрический фазный ток меняется также по способу питания синусоидально или трапецеидально.
Ротор
Самыми распространёнными и дешёвыми для изготовления ротора считаются ферритовые магниты, но их недостатком является низкий уровень магнитной индукции, поэтому на замену такому материалу сейчас приходят приборы, созданные из сплавов различных редкоземельных элементов, поскольку могут предоставить высокий уровень магнитной индукции, что, в свою очередь, позволяет уменьшить размер ротора.
ДПР
Датчик положения ротора обеспечивает обратную связь. По принципу работы устройство делится на такие подвиды:
- индуктивный;
- фотоэлектрический;
- датчик с эффектом Холла.
Последний тип получил наибольшую популярность благодаря своим практически абсолютным безынерционным свойствам и способности избавляться по положению ротора от запаздывания в каналах обратной связи.
Система управления
Система управления состоит из силовых ключей, иногда также из тиристоров или силовых транзисторов, включающих изолированный затвор, ведущих к сбору инвертора тока либо инвертора напряжения. Процесс управления этими ключами реализуется чаще всего путём использования микроконтроллера, требующего для управления двигателем огромного количества вычислительных операций.