Тема: законы кирхгофа и их применение для расчета электрических цепей

Значение в математике

Есть схема, состоящая из четырех контуров. Первый содержит блок питания ε1 с внутренним сопротивлением источника r1, второй содержит какую-то нагрузку R1. У третьего есть блок питания и нагрузка. Четвертое – это нагрузка. Точки B и F – узлы. Стрелки рядом показывают предполагаемое направление тока. Стрелка внутри раздела указывает направление пути. Необходимо найти ток в цепях: АК, АБ, БФ, КД. Теоретически вам нужно создать четыре уравнения, но поскольку ε1 и R1 – единственные в разделе KAB, мы объединим их в одну цепочку. Оказывается, нужно решить три уравнения.

Первое взято из первого правила: I1 + I2 + I3 = 0. Поскольку I1, I2 текут в узел B, они имеют положительный знак, а I3 следует за ним, поэтому он имеет отрицательный знак. Подставляя в уравнение, получаем I1 + I2 – I3 = 0, или в таком виде I1 + I2 = I3. Второе и третье уравнения берем из второго правила. Для этого мы используем профиль BCDFB и преобразуем формулировку в математическое решение: ε2 = I2 × R2 + I3 × R3. Для сечения ACDKA получаем, соответственно, ε1 = I1 × R1 + I3 × R3. Для наглядности удалим их отдельно.

I1 + I2 = I3

1 = I1 × R1 + I3 × R3

2 = I2 × R2 + I3 × R3

Было три задания. Мы определяем номиналы. Первый источник питания – 6 В, второй – 12 В

Хотя это невозможно сделать, потому что параллельные источники питания должны быть одинаковыми, это пригодится для важного урока. Первое сопротивление – 2 Ом, второе – 4 Ом, третье – 8 Ом

Осталось вставить данные в уравнения и мы получим: для второго числа 6 = 2I1 + 8I3, для третьего числа 12 = 4I2 + 8I3. Итак, мы избавляемся от общего неизвестного I3. По первому пункту он равен I1 + I2. Подставляем эту сумму и получаем: 6 = 2I1 + 8 (I1 + I2), 12 = 4I2 + 8 (I1 + I2). Раскрываем скобки и добавляем те же неизвестные: 6 = 10I1 + 8I2; 12 = 12I2 + 8I1. Чтобы найти I1, вам нужно избавиться от I2. Для этого умножаем первое уравнение на 12, а второе на 8, и получаем: 72 = 120I1 + 96I2; 96 = 96I2 + 64I1. Вычитаем второе из первого и записываем остаток -24 = 56I1, или I1 = -24/56 = -6/14 A. Почему текущий отрицательный?

Потому что блоки питания разные. На втором источнике напряжение больше, чем на первом, поэтому ток течет в обратном направлении. Находим I2, для этого вставляем значение I1 в любое из последних уравнений: 96 = 96I2 – 64 24/56. Разделите левую и правую части на 96, и вы получите: 1 = I2 – (64 × 24) / (96 × 56) или переместите дробную часть влево, меняя знак. I2 = 1 (64 × 24) / (96 × 56), после всех сокращений получаем 1 4/14 A. Для нахождения I3 используем первое число: I3 = I1 + I2. I3 = -24/56 + 1 4/14 = 1 (4 × 56) / (14 × 56) – (24 × 14) / (56 × 14) = 1 224/784 -336/784 = 1008/784 – 336/784 = 672/774 0,87 А. Полученное I1 = -6/14 А, I2 = 1 4/14 А, I3 ≈ 0,87 А.

Применение

Рекомендуем:

  • Частотный преобразователь для однофазного электродвигателя
  • Электродвигатели асинхронные трехфазные, их достоинства, технические характеристики, виды, особенности
  • Сила тока в цепи: как ее определить?

Формула Первого закона такова:

Для схемы, приведенной ниже, справедливо:

I1 — I2 + I3 — I4 + I5 = 0

Плюсовые — это токи, идущие к точке, а те, что выходят из нее «-».

Записывается это так:

  • k — количество ЭДС источников;
  • m – ветви замкнутого контура;
  • Ii,Ri – их сопротивление i-й и ток.

В данной схеме: Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4.

  • ЭДС принимается «+» при совпадении ее направления с выбранным направлением обхода.
  • При совпадении направления тока и обхода на резисторе, с плюсом будет также напряжение.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Правила (законы) Кирхгофа простыми словами

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила , для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

1.4. Законы Ома и Кирхгофа

Закон Ома для всей цепи выражает соотношение между электродвижущей силой (ЭДС), сопротивлением и током. Согласно этому закону ток в замкнутой цепи равен ЭДС источника деленной на сопротивление всей цепи:

где I – ток, протекающий по цепи;

E – ЭДС, генератора, подключенного к электрической цепи;

Rг – сопротивление генератора;

Rц – сопротивление цепи.

Закон Ома для участка цепи. Ток на участке цепи прямо пропорционален напряжению между началом и концом  участка и обратно пропорционален сопротивлению участка. Аналитически закон выражается в следующем виде:

где I – ток, протекающий на участке цепи;

R – сопротивление участка цепи;

U – напряжение на участке цепи.

Обобщенный закон Ома. Сила тока  в контуре цепи прямо пропорциональна алгебраической сумме ЭДС всех источников цепи и обратно пропорциональна арифметической сумме всех активных сопротивлений цепи.

где m и n – количество источников и резисторов в контуре цепи.

При алгебраическом суммировании со знаком “плюс” берутся те ЭДС, направление которых совпадает с направлением тока, а со знаком “минус”– те ЭДС, направление которых не совпадает с направлением тока.

Первый закон Кирхгофа. Электрические цепи подразделяют на неразветвленные и разветвленные. На рис. 1.10 представлена простейшая разветвленная цепь.

Рис. 1.10 Схема разветвленной цепи.

Разветвленной называется такая электрическая цепь, в которой ток от какого-либо источника может идти по различным путям и, в которой, следовательно, имеются точки, где сходятся два и более проводников. Эти точки называютузлами. Токи, текущие к узлу считаются имеющими один знак, а от узла – другой.

Учитывая это правило для схемы, изображенной на рис. 1.11,а можно записать

Для цепи, имеющей n ветвей, сходящихся в одном узле, имеем:

т.е. алгебраическая сумма токов ветвей, сходящихся в любом узле, равна

нулю.

Рис. 1.11 Схема поясняющая законы Кирхгофа.

Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

Второй закон Кирхгофа устанавливает связь между ЭДС, токами и сопротивлениями в любом замкнутом контуре, который можно выделить в рассматриваемой цепи.

В соответствии со вторым законом Кирхгофа алгебраическая сумма ЭДС, действующих в любом контуре разветвленной электрической цепи, равна алгебраической сумме падений напряжений на всех сопротивлениях контура

Рассмотрим электрическую цепь, изображенную на рис. 1.11,б. Обозначим стрелкой направление обхода контура. При составлении уравнений будем брать со знаком “плюс” те ЭДС и падения напряжений, направления которых совпадают с направлением обхода контура и со знаком “минус” те, которые направлены против обхода. Для цепи, изображенной на рис. 1.11,б второй закон Кирхгофа запишется в следующем виде:

Расчет электрической цепи по закону Кирхгофа

Законы Кирхгофа

Уравнения, описывающие поведение электрической цепи, составляют на основе законов Кирхгофа. Они определяют связь между токами и напряжениями элементов, образующих цепь. Уравнения, составленные согласно этим законам, называют уравнениями Кирхгофа.

Первый закон Кирхгофа определяет баланс токов в узлах электрической цепи.

Он формулируется следующим образом:

Алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

В уравнении (3.1) токи, направленные от узла, записывают с положительным знаком. Токи, направленные к узлу, записывают со знаком минус.

Система уравнений по первому закону Кирхгофа, записанная для всех узлов цепи, линейно зависима. В этом легко убедиться, сложив все уравнения. Поскольку ток каждой ветви входит в два уравнения с разными знаками, сумма тождественно равна нулю. Поэтому число независимых уравнений по первому закону Кирхгофа равно

, где — число узлов цепи.

По этой ссылке вы найдёте полный курс лекций по теоретическим основам электротехники (ТОЭ):

Второй закон Кирхгофа устанавливает баланс напряжений в контуре цепи:

Алгебраическая сумма напряжений ветвей в контуре равна нулю:

Если напряжение ветви совпадает с направлением обхода контура, то напряжению приписывают знак плюс, если же нет — знак минус. Перенесем напряжения источников напряжения, равные ЭДС этих источников, в правую часть. Уравнение (3.2) примет вид

В соответствии с последним равенством алгебраическая сумма напряжений ветвей в контуре электрической цепи равна алгебраической сумме ЭДС источников.

Число независимых уравнений, записанных по второму закону Кирхгофа, равно числу независимых контуров. Число таких контуров определяется формулой

, где — число ветвей.

Возможно вам будут полезны данные страницы:

Порядок составления уравнений но законам Кирхгофа

1. Необходимо сначала выбрать положительные направления токов и напряжений ветвей. Положительное направление тока показывают стрелкой на выводе элемента. Положительное направление напряжения показывают стрелкой, расположенной рядом с элементом. Полярности напряжений резисторов выбирают согласованными с направлениями токов. Направления токов источников напряжения выбирают совпадающими с направлениями ЭДС.

2. Записываем уравнения по первому закону Кирхгофа для

узлов.

3. Выбираем направления обхода контуров и записываем уравнения по законам Кирхгофа. Сопротивление проводника, соединяющего элементы, очень мало по сравнению с сопротивлением резистора и игнорируется. Ячейки внутренней цепи удобно выбирать в качестве независимых цепей. Можно воспользоваться и другим способом: выбрать по порядку контуры, так, чтобы каждый следующий контур содержал, по меньшей мере, одну ветвь, не входящую в предыдущие контуры.

4. Решаем полученную систему уравнений и определяем токи и напряжения цепи.

5. После определения токов и напряжений необходимо выполнить проверку. Для этого вычисленные значения переменных подставляют в одно из уравнений, составленных по законам Кирхгофа.

При составлении уравнений в качестве неизвестных рассматривают либо токи, либо напряжения резистивных элементов.

В первом случае уравнения цепи составляют относительно неизвестных токов резистивных элементов и напряжений на источниках тока. Напряжения на резистивных элементах, входящие в уравнения по второму закону Кирхгофа, выражают через токи по закону Ома. Такой способ составления уравнений называют токов ветвей.

Число совместно решаемых уравнений в методе токов ветвей можно сократить, если контуры выбирать так, чтобы они не включали источники тока. В этом случае неизвестными будут только токи резистивных элементов, и по второму закону Кирхгофа достаточно составить

уравнений, где — количество источников тока.

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу – второй закон этого автора, используемый для анализа электрической цепи. Второй закон Кирхгофа гласит, что для последовательной замкнутой цепи алгебраическая сумма всех напряжений в круге любой замкнутой цепи равна нулю. Претензия связана с тем, что петля петли представляет собой замкнутый токопроводящий путь, где потери энергии исключены. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равна нулю:

V = 0

Примечание. Термин «алгебраическая сумма» означает учет полярностей и знаков источников ЭДС, а также падения напряжения в цепи. Эта концепция закона Кирхгофа, известного как «сохранение энергии», как движение по контуру или замкнутому контуру, подтверждает логику возврата к началу цепи и к исходному потенциалу без потери напряжения во всей цепи.

Итак, вывод следует: при применении второго закона Кирхгофа к определенному элементу электрической цепи важно обращать особое внимание на алгебраические признаки падений напряжения на элементах (источниках ЭДС), иначе расчеты обернутся ошибкой

Одиночный контурный элемент — резистор

В качестве простого примера с резистором предположим, что ток течет в том же направлении, что и поток положительного заряда. В этом случае ток протекает через резистор от точки A к точке B. Действительно, от положительной клеммы к отрицательной. Следовательно, поскольку движение положительного заряда отмечается в направлении, аналогичном направлению протекания тока, на резистивном элементе будет зафиксировано падение потенциала, что приведет к падению отрицательного потенциала на резисторе (- I * R).

Если ток, протекающий из точки B в точку A, течет в направлении, противоположном потоку положительного заряда, вы заметите увеличение потенциала через резистивный элемент, поскольку происходит переход от отрицательного потенциала к положительному потенциалу, что дает падение напряжения. (+ I * R). Следовательно, чтобы правильно применить закон Кирхгофа к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление протекания тока в замкнутом контуре можно определять по или против часовой стрелки, и любой вариант допустим на выбор. Если выбранное направление отличается от фактического направления тока, соблюдение закона Кирхгофа будет правильным и действительным, но приведет к результату, когда алгебраический расчет имеет знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть еще один пример с петлевой петлей на соответствие второму закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа гласит, что алгебраическая сумма разностей потенциалов каждого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутой цепи с двумя резисторами и источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одной цепи. В результате через каждый из резисторов протекает одинаковый ток.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2 дают напряжение согласно второму закону Кирхгофа:

V = I * Rs

где: Rs = R1 + R2.

Очевидно, что применение второго закона Кирхгофа к одиночному замкнутому контуру дает формулу для эквивалента или импеданса для последовательной цепи. Допускается расширить эту формулу для нахождения значений капель потенциала по контурной окружности:

I = V / Rs

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора с номинальным сопротивлением 10, 20, 30 Ом соответственно. Все три резистивных элемента соединены последовательно с батареей на 12 вольт.

Необходимо рассчитать:

  • полное сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитываем полное сопротивление:

Ro = R1 + R2 + R3 = 10 Ом + 20 Ом + 30 Ом = 60 Ом

Ток цепи:

I = V / Ro = 12/60 = 0,2 А (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2 А (200 мА)

Потенциальное падение на каждом из резисторов:

VR1 = I * R1 = 0,2 * 10 = 2 В

VR2 = I * R2 = 0,2 * 20 = 4 В

VR3 = I * R3 = 0,2 * 30 = 6 В

Таким образом, действует Второй закон Кирхгофа, поскольку отдельные падения напряжения, обнаруживаемые по окружности замкнутого контура, в конечном итоге являются суммой напряжений.

Особенности составления уравнений для расчёта токов и напряжений

В первую очередь выбирается участок, который нужно исследовать. Затем на каждой ветви произвольно устанавливается стрелка, показывающая направление текущего движения. Это нужно для того, чтобы потом не ошибиться. В расчете будет исправлена ​​неточность направления. Каждая стрелка обозначена буквой I с индексом. Рассмотреть сечение будет удобнее, если стрелки будут в непосредственной близости от места соединения цепей. Также указаны источники питания и резисторы, а к общему резистору добавлено сопротивление.

Внутри разреза они также произвольно показывают направление обхода, ориентируясь на возможные потенциалы. Необходимо сравнить направление текущего движения. Это сравнение покажет, какой знак должен иметь номер. Если оба направления совпадают, поставьте знак «+» и «-», если направления противоположны.

Количество поставленных задач должно соответствовать количеству выбранных неизвестных. Предположим, есть три цепи, и их токи необходимо вычислить, а это значит, что также необходимо составить три формулы. Оказывается, новое уравнение должно содержать хотя бы один новый элемент, которого не было в предыдущих задачах.

Закон Кирхгофа в химии

Когда в ходе химической реакции система меняет свою теплоемкость, одновременно изменяется и температурный коэффициент возникающего теплового эффекта. Применяя уравнение, которое следует из этого закона, тепловые эффекты могут быть рассчитаны в любом температурном диапазоне. Дифференциальная форма этого уравнения:

∆Cp = d∆Q / dT,

где это находится:

  • ∆Cp – температурный коэффициент;
  • d∆Q – изменение воздействия тепла;
  • dT – изменение температуры.

Важно! Коэффициент определяет, как изменится тепловой эффект при изменении температуры на 1 К (2730 ° С). Теорема Кирхгофа для термодинамики

Теорема Кирхгофа для термодинамики

Третье уравнение Максвелла, а также принцип сохранения заряда позволили Густаву Кирхгофу создать два правила, применимых к электротехнике. Имея данные о значениях сопротивлений резисторов и ЭДС источников питания, можно рассчитать I fluent или U, приложенный для любого элемента схемы.

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Формулировка правил

сразу нужно уточнить. Хотя во многих технических текстах используется слово «закон», на самом деле это правило. В чем разница? Закон основан на фундаментальных истинах, фактах, правило приносит более абстрактное понимание. Чтобы лучше понять это, давайте взглянем на основы этого метода.

Из-за сложности расчетов лучше всего использовать его там, где схема имеет узлы и контуры. Узел – это место, где соединяются более двух цепей. Это как взять три или более общих ниток и связать их вместе. Цикл – это замкнутый цикл, который включает три или более таких узла.

Отдельная ветвь может содержать сколько угодно резисторов, что означает нагрузки с активным сопротивлением. Все они объединены в общий резистор, так как это упрощает задачу. Кроме того, в схеме могут присутствовать один или несколько источников питания, также объединенных в один элемент, или они могут не существовать. Таким образом, цепь будет состоять только из сопротивления.

Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, в уравнении будет на одну букву больше, чем сами связи. Например, секция состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. Фактически отсчет можно начинать с любой буквы буквы цикл, например C, D, A, B, C, только в первой версии проще не запутаться.

Определения

Как уже было сказано, ветвь – это отрезок электрической цепи, в котором направление движения заряда происходит в одном направлении. Ветви, сходящиеся к узлу, имеют разные направления тока. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также принадлежат этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящихся к узлу и границе. Самое главное и сложное – придумать уравнения, учитывающие все составляющие этой формулы.

Первый закон

Первое правило касается сохранения заряда. По его словам, натяжение в узле должно быть нулевым. Это возможно только в том случае, если все входящие токи входят в эту точку через одну ветвь и уходят через другие. Соотношение входящего и выходящего токов может быть различным, но общая составляющая положительного и отрицательного потенциалов всегда одинакова.

Предположим, токи входят в узел через три ветви и выходят через две. Сумма входящих токов будет в точности равна сумме исходящих. Если вы визуализируете это математически, сумма положительных векторов I1, I2 и I3 будет равна сумме отрицательных векторов I4 и I5.

Второй закон

Это правило связано с сохранением энергии в цепи. Другими словами, энергия ЭДС, включенных в рассматриваемую цепь или участок, равна падению напряжения на сопротивлениях этого участка. Если в выбранной области нет питания, общее падение напряжения на всех нагрузках будет равно нулю. Прежде чем приступить к расчетам, следует ознакомиться с некоторыми другими моментами.

Открытия Густава Кирхгофа

Чаще под законами Кирхгофа подразумеваются закономерности, сформулированные для замкнутых контуров и узлов электрических цепей. В русскоязычной литературе их предпочитают называть правилами. Закона два. Первый оперирует с токами, второй с напряжениями. Составленная при помощи формул система уравнений позволяет найти параметры сети, удовлетворяющей требованиям применимости к ней данных вычислений. Правила сформулированы в 1845 году, это не единственное открытие Кирхгофа.

В термодинамике известен другой принцип. Гласит, что соотношение излучательной способности тела и поглощательной постоянно для любых материалов вне зависимости от их природы и определяется двумя внешними параметрами:

  1. Частотой волны.
  2. Температурой окружающей среды.

Тесно связан с предыдущим открытием факт из жизни великого учёного. В 17 веке начала развиваться спектроскопия, Кирхгоф не преминул оставить в науке собственный след, открыв три закона:

  • Спектр излучения твёрдого тела непрерывный. Кирхгоф ввёл понятие абсолютно-чёрного тела, ставшее сегодня ключевым в изучении вопросов передачи энергии на расстояние.
  • Разреженный газ излучает в выделенных волнах спектра, с длинами, зависящими от состояния квантовых переходов электронов вещества. На указанной основе работают лазеры.
  • Горячее твёрдое тело, окружённое охлаждённым газом имеет непрерывный спектр излучения за вычетом отдельных частот, поглощённых обволакивающим облаком. Длины волн зависят от квантовых переходов витающего вокруг объекта вещества.

Учёный добрался до термохимии и показал, что тепловой эффект реакции зависит от изменения теплоёмкости системы (до и после процесса). Постулат причислен к основным в разделе науки. В гидродинамике уравнения Кирхгофа описываю движения твёрдого тела в идеальной жидкости.

Первый закон

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.


Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.


Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки

Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: