Однофазные стабилизаторы напряжения

Одно или несколько устройств?

Бывают ситуации, когда необходимо установить стабилизатор на много электроприборов. Например, это может быть офисное здание, промышленный цех или просто большой дом. В таком случае можно оказаться перед непростым выбором: один мощный стабилизатор на все приборы или несколько устройств, между которыми и разделится нагрузка.

Когда используется одно устройство для одного прибора или небольшой группы приборов, то это надёжнее, но не практично. Если же устанавливать один стабилизатор на большое количество приборов, то это удобнее, дешевле, но менее безопасно. Многое зависит от организации питающего напряжения во всём здании. В некоторых случаях оно имеет сложную схему, и банально не получится подключить все приборы к одному стабилизатору. Тогда вопрос отпадёт сам собой.

Если регулярно прыгает напряжение и нужно обезопасить много приборов, то оптимальным вариантом будет установка мощного, но не самого точного стабилизатора на весь объект. И дополнительная установка индивидуальных устройств к технике, обладающей повышенной чувствительностью к перепадам напряжения.

Релейные стабилизаторы

Релейный стабилизатор

Устройство и принцип работы. Приборы этой топологии относятся к электронным устройствам, действие которых построено на базе дискретного (ступенчатого) принципа стабилизации электроэнергии. Он заключается в автоматическом переключении обмоток автотрансформатора и выбора той, напряжение на которой максимально близко к номинальному. Коммутация необходимых для повышения или снижения входного напряжения контуров происходит благодаря срабатыванию силовых электронных реле (отсюда и название данной разновидности стабилизаторов). Управление процессом осуществляет специальный блок. Он контролирует характеристики сетевого напряжения и при их отклонении от установленного значения включает в работу ту или иную ступень стабилизации (количество ступеней соответствует числу установленных реле).

Преимущества. Основное преимущество этих устройств перед электромеханическими аппаратами устаревших конструкций – повышенная скорость срабатывания (не более 10-20 мс). Кроме того, релейные стабилизаторы обладают простейшей структурой, в которой исключены сложные узлы и дорогостоящие компоненты, что упрощает их техническое обслуживание и ремонт. Ремонтные работы, как и сами приборы, отличаются низкой стоимостью. Релейные стабилизаторы не боятся перегрузок, чем и обусловлен их длительный срок эксплуатации. Также этот тип устройств выделяется сравнительно небольшими габаритами и малым весом. Они не требуют дополнительного охлаждения и отлично справляются со своими функциями в условиях отрицательных температур.

Недостатки. Главный недостаток релейных стабилизаторов напряжения – дискретное (неплавное) регулирование. Он обусловлен принципом работы и проявляется в виде мигания электрических ламп при переключении ступеней стабилизации. Cтупенчатая корректировка напряжения также:

  • снижает точность стабилизации (может достигать 10%), при этом рост быстродействия релейных устройств неминуемо повышает погрешность в их работе;
  • способствует трансляции искажений сетевой синусоиды на выход устройства.

Релейная топология сохраняет и ряд минусов присущих электромеханическим изделиям:

  • работа стабилизатора не бесшумна – срабатывание сопровождается звуковым эффектом подобным щелчку;
  • реле подвержены механическому износу, в меньшей степени чем элементы сервопривода, но тенденция к ухудшению качества работы с увеличением срока эксплуатации сохраняется.

Применение. Релейные стабилизаторы подходят для защиты маломощных приборов в сетях, характеризующихся небольшими колебаниями напряжения. Вышеперечисленные недостатки говорят о недостаточном соответствии приборов этой группы требованиям по защите современной электроники, чувствительной к малейшим отклонениям питающего напряжения.

Назначение

Стабилизатор напряжение — электрический или электромеханический аппарат (устройство), на который подается U сети с целью стабилизации этого параметра на выходе.

Задача заключается в поддержании выходного U в узком диапазоне для защиты питающихся потребителей от повреждения. При этом уровень частоты и напряжения (при нормальном входном сигнале) остается неизменным.

Выпускаются и источники стабилизированного питания — аппараты, в задачу которых входит преобразование входящей электрической энергии в пригодный для дальнейшего применения вид.

Стабилизаторы бывают двух видов (по типу Uвых) — переменного и постоянного тока. При этом параметры U на входе и выходе устройства, как правило, идентичны, но в некоторых моделях они могут различаться.

Устройства моделей с регулятором

Для холодильного оборудования востребованным является регулируемый стабилизатор напряжения. Схема его подразумевает возможность настройки прибора перед началом использования. В данном случае это помогает в устранении высокочастотных помех. В свою очередь электромагнитное поле проблем для резисторов не представляет.

Конденсаторы также включаются в регулируемый стабилизатор напряжения. Схема его не обходится без транзисторных мостов, которые соединяются между собой по коллекторной цепочке. Непосредственно регуляторы могут устанавливаться различных модификаций. Многое в данном случае зависит от предельного напряжения. Дополнительно учитывается тип трансформатора, который имеется в стабилизаторе.

Устройство

Однофазный электромеханический стабилизатор напряжения состоит из следующих узлов:

  • Собственно автотрансформатор;
  • Щеточный узел;
  • Сервопривод;
  • Блок контроля и управления;
  • Блок индикации;
  • Устройство внутреннего питания;
  • Устройство защиты.

В качестве дополнительных опций производители могут включать также фильтрующие элементы для защиты потребителей от помех, распространяющихся по сети переменного тока.

Автотрансформатор

Это самый габаритный и тяжелый узел. Мощность автотрансформатора определяет величину нагрузки, которая может достигать десятков киловатт. Достоинством автотрансформатора является то, что он не имеет раздельных первичных и вторичных обмоток. Вторичная обмотка является частью первичной. При равенстве входного и выходного напряжений трансформатор не играет никакой роли, лишь добавляя нагрузку в сеть в виде незначительного тока холостого хода.

Щеточный узел

Благодаря щеткам образуется контакт с витками обмотки трансформатора. Требованиями к щеточному узлу являются низкое трение для облегчения передвижения по обмотке, низкое переходное сопротивление и стойкость к износу.

Щетки являются самым ненадежным элементом сервоприводного стабилизатора напряжения. Срок службы токосъемных элементов даже при умеренной эксплуатации составляет несколько лет, после чего они подлежат замене.

Для изготовления щеток используется материал на основе графита. Свойствами графита являются его низкий коэффициент трения и низкое электрическое сопротивление. В то же время графит – довольно мягкий материал, и со временем щетки изнашиваются. Для равномерной выработки и снижения износа часто щетки выполняют в виде колес, которые перекатываются по виткам автотрансформатора.

Наличие переходного сопротивления между материалом щеток и витками трансформатора вызывает повышенное тепловыделение в месте контакта. Особенно велико сопротивление в тех частях обмотки, где щетки оказываются нечасто, например, при большом снижении или повышении входного напряжения, поскольку оголенные витки медного провода покрываются пленкой окислов от контакта с воздухом.

Для отвода излишков тепла щеточный узел снабжается ребристым радиатором охлаждения.

Сервопривод

Шаговый двигатель, который используется для привода щеточного узла, должен обладать высокой скоростью вращения и мощностью, достаточной для преодоления силы трения щеток, прижатых пружинами к обмотке. Разумеется, что чем выше мощность стабилизатора, тем габаритнее щетки и выше их трение об обмотки. Соответственно, мощность сервопривода должна быть также выше.

Блоки электроники

Электронно-управляющий блок осуществляет контроль величин входного и выходного напряжений. Чем больше величина рассогласования, тем большее количество импульсов должно быть подано на обмотку шагового электродвигателя. По мере проворачивания щеточного узла выходное напряжение все более приближается к номинальному значению. При точном совпадении подача управляющих импульсов прекращается полностью.

Блок индикации позволяет визуально контролировать состояние входного и выходного напряжений. Данные выводятся на цифровой индикатор или стрелочный прибор в дешевых моделях.

Устройство защиты производит отключение устройства от сети и нагрузки при выходе напряжения за пределы допустимых значений, а также при превышении допустимой нагрузки потребителей.

Для питания внутренней электронной схемы используется малогабаритный маломощный трансформатор, первичная обмотка которого рассчитана на весь допустимый диапазон входного напряжения.

Типы стабилизаторов

В зависимости от принципа действия, стабилизаторы осуществляют нормализацию напряжения разными способами.

В бытовых условиях применяются следующие типы однофазных стабилизаторов:

  • Сервоприводные;
  • Релейные;
  • Тиристорные.

Сервоприводный

Стабилизатор напряжения с сервоприводом представляет собой обычный автотрансформатор с механической регулировкой напряжения. По обмотке трансформатора перемещается скользящий контакт, закреплённый на роторе серводвигателя. Величину угла поворота ротора задаёт схема контроля напряжения. При низком напряжении трансформатор работает как повышающий, а при высоком напряжении как понижающий. В результате на выходных клеммах устройства получается напряжение точно соответствующее номинальному – 220В.

Устройство стоит недорого и обеспечивает высокую точность установки. Основным недостатком электромеханического стабилизатора является его низкая скорость отработки скачков напряжения и шум от работы серводвигателя. Из-за того, что щётки загрязняются, срабатываются и обгорают, такой стабилизатор требует регулярного технического обслуживания.

Релейный

Релейный стабилизатор так же имеет в своей конструкции автотрансформатор. Но вместо плавной регулировки напряжения, это устройство может обеспечить только дискретное изменение напряжения на выходе. Это обусловлено особенностью конструкции. Изменение напряжения на выходе, осуществляется переключением обмоток трансформатора с помощью реле. Причём, чем большее количество реле используется в схеме устройства, тем большую точность можно получить. Несмотря на это добиться идеальной точности с помощью такого устройства, практически невозможно. К достоинствам прибора релейного типа можно отнести хорошую скорость реакции на изменения входного напряжения, а недостатком его является малая точность и щелчки реле во время работы.

Тиристорный

Принцип работы полупроводниковых стабилизаторов основан на переключении обмоток трансформатора с помощью ключей, которые выполнены не на реле, а на полупроводниковых многослойных приборах – тиристорах или симисторах. Однофазный тиристорный стабилизатор напряжения обладает минимальным временем переключения, способен выдерживать большие токи и сам потребляет мало энергии из-за отсутствия индуктивных нагрузок, таких как обмотки трансформатора или катушки реле. Тиристорные стабилизаторы рекомендуются для стабилизации напряжения при подключении особо чувствительной техники, например, для газовых котлов.

Устройство может работать при отрицательных температурах, поэтому используется в неотапливаемом помещении. Разновидностью электронного стабилизатора является однофазный симисторный стабилизатор напряжения. В отличие от тиристора, этот симметричный полупроводниковый прибор пропускает ток в двух направлениях, поэтому для построения электронного ключа требуется один симистор, заменяющий два тиристора. Достоинства прибора – малые габариты бесшумность и  высокая скорость переключения. Основной недостаток симисторного прибора – это неспособность выдерживать броски напряжения, что ограничивает его применение при работе с реактивной нагрузкой.

Это интересно: Зачем нужен стабилизатор напряжения?

Плюсы и минусы электромеханического стабилизатора напряжения

ПЛЮСЫ

— Невысокая стоимость

— Высокая точность стабилизации

Благодаря тому, что механический стабилизатор не имеет фиксированных отводов от автотрансформатора, а может сам формировать нужное количество витков обмотки и соответственно достаточно гибко изменять коэффициент трансформации, точность стабилизации получатся очень высокой.

— Плавная стабилизация

Так как изменение положения подвижного контакта производится с помощью сервопривода, который плавно перемещает его по обмотке регулируемого автотрансформатора — не происходит резких скачков напряжения и даже кратковременного обрыва контакта, чего очень боятся чувствительные электронные компоненты электрооборудования.

— Устойчивость к кратковременным перегрузкам

Конструкция механического стабилизатора позволяет ему кратковременно выдерживать скачки напряжения в сети, даже если оно увеличивается в два раза относительно номинального.

— Устойчив к помехам в напряжении, частоте и форме тока

Использование автотрансформатора, как основного элемента стабилизации напряжения, позволяет не бояться изменений частоты и формы тока.

— Компактность

Минимальное количество используемых в механическом стабилизаторе компонентов, позволяет сделать его достаточно компактным. Его размер формируется в большей степени из размера регулируемого автотрансформатора.

— Высокий коэффициент полезного действия (КПД)

На некоторых форумах и информационых ресурсах, рассказывающих о электромеханических стабилизаторах, встречается мнение, что они имеют низкий КПД, но это не так. Практически все виды стабилизаторов в основе которых лежит автотрансформатор: релейные, механические, теристорные, симисторные, гибридные, имеют достаточно высокий КПД, 94-98%.

МИНУСЫ

— Наличие движущихся деталей

Самым слабым узлом электромеханического стабилизатора является именно механизм перемещения контакта по обмотке, он очень чувствителен к загрязнениям и пыли, да и просто подвижные детали имеют наибольший естественный износ при работе. Данный недостаток автоматически порождает следующий.

— Необходимости регулярного технического обслуживания

Наличие движущихся деталей вынуждает периодически обслуживать сервоприводные стабилизаторы — чистить их, менять щетки и т.д. Отнести данные стабилизаторы к устройствам — купил, установил и забыл нельзя, они периодически требуют внимания к себе.

— Шумность

Передвижение щеток и работа сервопривода создают определенный шум, он не такой навязчивый и громкий как, например, щелчки при переключении релейного стабилизатора, но всё же ощутимый и создаёт некоторый дискомфорт, когда стабилизатор находится с вами в одной комнате.

— Скорость реагирования

Одним из самых значимых недостатков механических стабилизаторов является низкая скорость реагирования на изменения напряжение. Это и неудивительно, ведь сервопривод не может моментально передвинуть токосниматель по обмотке, на это ему требуется определенное время, у многих моделей изменение напряжения происходит всего по 10-15 вольт в секунду. Таким образом, если произойдет резкое падение входного напряжение сразу на 60 вольт, стабилизатор нормализуют его лишь через 4-6 секунд, всё это время электрооборудование будет работать при низком напряжении.

— Ограниченный диапазон рабочих температур

В среднем, рабочий диапазон сервоприводных стабилизаторов лежит в пределе -5 до +40 градусов. Таким образом количество мест, где возможно их применение или установка  значительно ограничено.

— Боязнь пыли

Наличие подвижного токоснимателя и электродвигателя делают механический стабилизатор очень чувствительным к попаданию внутри него пыли, которая значительно увеличивает вероятность поломки. Из-за этого, например, нельзя устанавливать сервоприводные стабилизаторы на производстве, в цеху.

Рейтинг лучших стабилизаторов напряжения

В каждой квартире можно насчитать до десяти, а то и более электроприборов. Некоторые из них неприхотливы и не боятся скачков напряжений. В сравнении с ними, современные газовые котлы или дорогостоящие компьютеры для безопасной работы требуют наличия стабилизатора напряжения. Не все модели, которые предлагает торговая сеть, способны решить проблему нестабильной электроэнергии.

Лучшие релейные устройства

РЕСАНТА АСН-5000/1-Ц

Особой популярностью пользуются релейные приборы. Они отличаются от устройств иных типов низкой ценой. По остальным характеристикам полностью удовлетворяют требования потребителя. Имеют понятное строение, нет сложных компонентов. Неполадки легко диагностируются и могут быть исправлены в домашних условиях.

Из самых доступных и недорогих можно выбрать модель РЕСАНТА АСН-5000/1-Ц для использования на даче, в гараже, котельной.

По соотношению цена–качество подойдет устройство более широкого диапазона. Релейный стабилизатор Энергия АСН 5000 имеет 7 ступеней стабилизации, представлен в переносном и компактном исполнении.

Среди высокотехнологичных, качественных и дорогих видов можно отметить модель Энергия Voltron 5000. Профессиональный стабилизатор с хорошими характеристиками, но имеет высокую цену.

Сверхточные приборы для газовых котлов

PROGRESS 8000SL

Специфика работы таких приборов требует круглосуточную высокоэффективную борьбу с отклонениями, импульсами и перепадами напряжения. Требуется высокая скорость стабилизации, чтобы защитить электронику в аварийной ситуации.

Надежно защитить котел и ряд дополнительных розеток может устройство PROGRESS 8000SL. Обладает отличными характеристиками, снабжено функцией охлаждения, работает практически бесшумно.

Механические стабилизаторы

Калибр АСН- 7000/1

Среди устройств этого типа для кухни подойдет простой и надежный прибор Ресанта ACH 1500/1-ЭМ. Суммарная мощность не более 1,5 кВт. Одновременно можно подключить холодильник, микроволновку, кофемашину и мультиварку.

Оптимальным вариантом для квартиры будет Калибр АСН- 7000/1. Прибор имеет вертикальную архитектуру, снабжен колесами, мобилен, может быть установлен в любом месте.

Стабилизатор RUCELF SDF.II-9000-L уверенно защитит от перегрузок дорогостоящее оборудование. Обладает мощными характеристиками при оптимальных размерах.

Электронные устройства

Цифровые стабилизаторы имеют небольшие размеры и массу. Штиль R 400ST — устройство для защиты электронных блоков управления компьютера, оргтехники, отопительного оборудования.

Не менее надежный стабилизатор Энергия 12000 BA Classic E 0101-0099. Отличается быстрым временем срабатывания. Имеет встроенный дисплей. Может работать при температуре от -30 до +40°C.

Стабилизаторы напряжения с двойным преобразованием

Штиль R 3500

Такие устройства являются лидерами среди остальных типов стабилизаторов. Эффективность достигается благодаря работе сразу двух процессов преобразования. Штиль R 3500 – продуманный, надежный прибор для небольших нагрузок.

Аппарат Powercom AR-10K может обеспечить работу мощной техники. Имеет все виды защиты, комплектуется информационным дисплеем. Стоит такая модель достаточно дорого.

Лучшие гибридные приборы

Особенностью этих устройств является их возможность пользоваться энергией аккумуляторов, питающихся от генератора, сети, солнечных батарей или ветрогенератора. Он может работать параллельно с источником переменного тока, питаясь одновременно от аккумулятора и сети.

По совокупности характеристик надежности неплохим гибридным прибором считается Studer Xtender. Имеет гибкую и продвинутую настройку системы автономного и резервного снабжения.

Преимущества инвертора российского производства МАП SIN PRO Гибрид Dominator проявляются только при работе солнечных батарей. Для взаимодействия с сетевыми инверторами не имеет достаточно функций.

Схема устройства и главные особенности

Основу схемы сервоприводного стабилизирующего устройства составляет пара силовых элементов:

  1. Автоматический трансформатор с тороидальным ферромагнитным сердечником;
  2. Вольтодобавочный вспомогательный транформатор.

Компенсация отклонений входного напряжения от нормативного выходного показателя выполняется путём наращивания или уменьшения коэффициента трансформации.

Управляет работой устройства микропроцессорный блок. Он анализирует параметры тока на входе, вычисляет изменения, необходимые для их нормализации, и отдаёт команды сервоприводу. Последний имеет специальный подвижный контакт, который в соответствии с указаниями блока управления перемещается по трансформаторным обмоткам, отключая или активируя определённое количество их витков для поддержки заданного выходного напряжения.

По типу исполнения сервоприводные стабилизаторы напряжения могут быть:

  • Напольными (стационарными);
  • Переносными.

В зависимости от количества фаз сетевого питания и параметров стабилизации, нормализаторы, принадлежащие классу электромеханических, бывают:

  • Однофазными;
  • Трёхфазными со среднефазной регулировкой выходного напряжения;
  • Трёхфазными с независимой стабилизации параметров тока на каждой фазе.

Разновидностью электромеханических стабилизаторов напряжения являются так называемые электродинамические устройства. В отличие от первых, вторые имеют не щёточный, а роликовый подвижный контакт, выполненный из графита. Это обеспечивает снижение уровня шума при работе, снижает риск выхода системы из строя при отклонениях параметров входного тока за рамки критического диапазона и в целом обеспечивает высокую стабильность работы устройства стабилизации и увеличивает срок его службы.

Время регулирования

Время регулирования напряжения, она же скорость стабилизации, еще один наиважнейший показатель и здесь ситуация складывается совсем другая.

Так релейный стабилизатор, реагирует на изменения входящего напряжения со скоростью 10 миллисекунд, при этом ему не важно на сколько оно упало или выросло (в пределах своего рабочего диапазона 140-260В), он за эти доли секунды сменит режим и будет выдавать напряжение 200+/- 8%. В это же время электромеханический стабилизатор имеет скорость стабилизации всего 10 Вольт в секунду

Таким образом, если падение напряжения составит 30 Вольт (входящее напряжение будет 190В), сервоприводной модели потребуется порядка 3 секунд чтобы на выходе было 200+/- 2%. Все эти 3 секунды, приборы подключенные к стабилизатору будут работать при пониженном напряжении

В это же время электромеханический стабилизатор имеет скорость стабилизации всего 10 Вольт в секунду. Таким образом, если падение напряжения составит 30 Вольт (входящее напряжение будет 190В), сервоприводной модели потребуется порядка 3 секунд чтобы на выходе было 200+/- 2%. Все эти 3 секунды, приборы подключенные к стабилизатору будут работать при пониженном напряжении.

По времени регулирования релейный стабилизатор значительно превосходит электромеханический.

Компенсационный последовательный

Компенсационный последовательный стабилизатор имеет обратную связь. В нем выходное напряжение сравнивается с эталоном. Разница между ними нужна для создания сигнала устройству, контролирующему напряжение.

С сопротивления снимается некоторое количество выходного напряжения, сравнивающееся с основным значением стабилитрона. Эта разница поступает на усилитель и подается на транзистор.

Устойчивое функционирование создается при сдвиге фаз. Так как часть напряжения на выходе поступает на усилитель, то оно сдвигает фазу на угол 180 градусов. Транзистор, подключенный по типу усилителя, фазы не сдвигает, и петлевой сдвиг равен 180 градусов.

Импульсные

Электрический ток, обладающий неустойчивыми свойствами, с помощью коротких импульсов поступает на устройство накопления стабилизатора, которым является конденсатор или катушка.

Накопленная энергия далее выходит на потребитель с другими свойствами. Есть два способа стабилизации:

  1. Управление длиной импульсов.
  2. Сравнение выходного напряжения с наименьшим значением.

Импульсный стабилизатор может изменять напряжение с разными результатами. Их делят на виды:

  • Инвертирующий.
  • Повышающе-понижающий.
  • Повышающий.
  • Понижающий.

Достоинства:

Малая потеря энергии.

Недостатки:

Помехи в виде импульсов на выходе.

Плюсы и минусы сервоприводных стабилизаторов

Плюсы. Очевидными преимуществами использования можно назвать:

— высокая точность коррекции напряжения; — плавность регулировки; — не вносят изменений в форму выходного (чистая синусоида); — достаточно высокий КПД; — хорошая устойчивость к токовым перегрузкам; — невысокая стоимость (на сегодня уступают лишь устройствам релейного типа).

Минусы. Большинство недостатков “электромеханики” обусловлено наличием сервопривода и большого количества движущихся и вращающихся деталей:

— низкая скорость коррекции напряжения (серьезно ограничена скоростью передвижения токосъемных контактов); — необходимость проведения регулярного обслуживания, контроля состояния и замены “расходников” (чаще всего, графитовых щеток); — довольно узкий диапазон рабочих температур (при средних значениях -5. 40°C требуется установка в отапливаемых помещениях); — возможно наличие шума в работе — что не всегда делает возможным их установку в жилых комнатах.

  • Главная
  • Электротехнические устройства
  • Устройство и принцип работы электромеханического стабилизатора

Принцип действия и область применения

Работает однофазный электромеханический стабилизатор напряжения по следующему принципу:

  1. При подключении устройства к сети, блок управления устанавливает фактическую величину входного напряжения и рассчитывает коэффициент трансформации, необходимый для достижения требуемого на выходе показателя;
  2. В соответствии с выполненными расчётами, управляющий блок подаёт сигнал электродвигателю, который приводит в движение щёточные или роликовые коммутационные контакты;
  3. Посредством сервоприводной коммутации последовательно активируется или отключается определённое число витков основной и вторичной (вольтодобавочной) трансформаторных обмоток. В результате достигается необходимый коэффициент трансформации и на выход стабилизатора подаётся стабильное без помех напряжение 220В.

Трёхфазное устройство стабилизации сервоприводного типа включает 3 однофазных стабилизирующих устройства с одинаковыми техническими характеристиками, совместная работа которых обеспечивается посредством опции синхронизации. Трёхфазные системы стабилизации применяются для защиты от аномалий входного сетевого тока потребителей с соответствующим количеством фаз и низкими требованиями к скорости стабилизации.

Однофазные стабилизаторы с электромеханическим принципом работы широко применяются в быту с целью обеспечения стабильного напряжения питания для:

  • Холодильников;
  • Отопительных котлов;
  • Радиаторных систем обогрева;
  • Телевизионной и радиотехники;
  • Музыкальной аппаратуры (усилителей, звуковых процессоров, акустики и пр.);
  • Компьютеров и серверных систем;
  • Сетей освещения и отдельного осветительного оборудования;
  • Стиральных машин;
  • Бытовых и кухонных электроприборов и т.д.

Плюсы и минусы

Применение инверторной технологии позволило кардинально снизить вес и габариты стабилизирующих устройств. Главным образом это произошло за счёт отсутствия в инверторных схемах трансформаторов, являющихся самой тяжёлой и объёмной деталью приборов предыдущего поколения.

Инверторные стабилизирующие приборы превосходят все предыдущие модели, почти по всем основным показателям:

  • самый широкий диапазон регулирования напряжения (от 90 до 310 Вольт);
  • мгновенная реакция на любые скачки питающего сетевого напряжения (задержка 0 мс — без аналогов);
  • идеальное качество выходного напряжения (выпрямляет синус — без аналогов);
  • самый маленький вес и габариты приборов (у других есть трансформатор, он самый тяжелый из компонентов).

Данный прибор идеален для газового котла, так как тому критичен чистый синус

, а инвертор выдает его в идеальном виде (при этом инвертора нет в других видах стабилизаторов).

К недостаткам

можно отнести высокую цену, а так же возможное гудение у некоторых производителей, что, скорее всего, связано с экономией на компонентах. Если вам это мешает, то такой товар можно вернуть в течение 14 дней почти у всех продавцов. Несмотря на то, что транзисторы установлены на радиаторах, при длительной работе и транзисторы, и радиаторы сильно нагреваются. Поэтому во многих инверторных стабилизаторах дополнительно ставят небольшие вентиляторы для охлаждения, как на персональных компьютерах. Этому типу стабилизаторов необходимо обеспечивать хорошую вентиляцию, и при установке не закрывать вентиляционные отверстия. Иначе, при перегреве будет срабатывать защита, и отключать весь стабилизатор, что будет обесточивать всю подключённую к нему нагрузку. А при длительных сильных перегревах, или выходе из строя вентиляторов охлаждения могут выйти из строя и сами транзисторы, или электросхемы. Что приведёт к последующему дорогостоящему ремонту. Но производители, например Штиль Инстаб , дают 2 года гарантии на всю линейку приборов, косвенно это говорит о том, что компоненты проверены и работа стабильна. К слову срок эксплуатации от 10 лет (зависит от индивидуальных условий).

Читайте по теме: полный обзор Штиль Инстаб + видео работы.

Вентиляторы охлаждения стабилизатора могут создавать некоторый шум при своей работе, что не делает его полностью бесшумным при эксплуатации.

И ещё, инверторные стабилизаторы критичны к качеству применяемых электронных компонентов и их монтажу. Плохое крепление транзистора к радиатору может вызвать быстрый его перегрев, и выход из строя всего прибора.

Стоимость хоть и не маленькая, но СтабЭксперт.ру считает, что постоянное совершенствование технологий производства основных электронных компонентов и увеличение их массового выпуска, безусловно, должны привести к удешевлению конечного продукта.

Шаг №5. Как не допустить ошибку, когда в дом приходят 3 фазы, а не одна: мнение электрика

Владельцы частных домов с трехфазным питанием стоят перед выбором:

  1. приобрести один трехфазный преобразователь на все здание;
  2. или установить три одинаковые однофазные модели на каждую фазу.

Здесь надо быть предельно внимательным. Любой трехфазный стабилизатор создается для работы с такими же трехфазными нагрузками, например, асинхронными электродвигателями.

У них по всем фазам протекают примерно равные токи, сдвинутые на одинаковый угол от вектора приложенного напряжения.

При подключении к такому преобразователю трех фаз с разными нагрузками, когда на одной линии работает маломощное освещение, а на другой энергоёмкий котел отопления, стабилизированный источник эксплуатируется в экстремальном режиме. Он может работать не корректно либо вообще отказать.

В такой ситуации лучше использовать три независимых однофазных стабилизатора. Каждый из них будет работать автономно без логической завязки на остальные источники.

Трехфазные стабилизаторы напряжения устанавливаются на трехфазные потребители с равнозначной нагрузкой.

Видеоролик владельца 7sorok дополняет материал по выбору одного трехфазного или трех однофазных стабилизаторов для частного дома.

Принцип работы

Постоянное движение сервопривода и является главной слабостью электромеханического устройства.
Ну это не суть.
На конце хода щёток, соответствующему наименьшему напряжению В установлены концевые выключатели, останавливающие двигатель. В это же время наблюдалась хаотическое включение реле. Разница в цене с Самсунговскими — копеечная, а вот из-за одной такой детали ломаются и телевизоры, и стиралки и утюги.
Привод включает маломощный двигатель, на котором располагается щётка контакта. Схема электрическая стабилизатора напряжения Ресанта-АСНэм Для удобства восприятия я отметил на схеме основные структурные части. Соответственно, ремонт их будет несколько иным. Если понадобится, заменить транзисторы на новые.
О них мы отметим несколько ниже, а именно тогда, когда будем рассматривать особенности работы и ремонта каждого вида нормализатора от латвийского производителя. Ремонт электромеханических стабилизаторов напряжения Самая главная проблема таких стабилизаторов — перегрев. Поскольку щётка — это контакт, причём довольно плохой, то она греется.

Об этой проблеме я также пишу к дому через АВР. Также на плате был обнаружен операционный усилитель HA от Hitachi Semiconductor.

Оба стабилизатора отличаются принципом работы, имеют свои сильные и слабые стороны. Чистить надо по ходу щётки, потом промыть тщательно спиртом и вытереть насухо чистой тряпкой. Если напряжение понижается и дальше, то автотрансформатор уже не справляется, и весь стабилизатор отключается. Подобная нестабильная работа может приводить к выходу из строя данного устройства.

В завершение очистить все контакты специальным бензином и собрать реле в обратном порядке. При нормальной работе при включении стабилизатора можно услышать, как собирается КЦ — примерно через 10 секунд щелчок на одной из электронных плат , потом ещё один, и третий щелчок запускает контактор и весь стабилизатор

Стоит обратить внимание на тот факт, что общее строение всех нормализаторов этого типа является похожим.
Стабилизатор напряжения для дома и tokzamer.ru АСН-5000/1Ц

Принцип работы

Во время работы инверторного стабилизатора осуществляется два основных процесса:

  1. Преобразование входного переменного тока в постоянный.
  2. Преобразование постоянного тока в переменный.

Первый процесс осуществляет выпрямитель и корректор коэффициента мощности. Другими словами, когда переменный и нестабильный ток входит в стабилизатор, он проходит через фильтр частот и в выпрямителе превращается в постоянный.

Он приобретает практически синусоидальную форму. Плюсом такого преобразования является достижение очень высокого коэффициента мощности. Этот коэффициент равняется почти единице. Далее этот ток накапливается в конденсаторах. Их еще называют вторичным источником энергии.

После этого постоянный ток продолжает движение к инвертору, который уже делает ток переменным и синусоидальным. Этот инвертор работает таким образом, что переменный ток получает частоту, равную 50-ти герцам, и напряжение, равное 220-ти вольтам.

Примечательным фактом является то, что кварцевый генератор, который является составной частью инвертора, делает это преобразование с очень высокой степенью точности. Конечно, работой каждой составной части стабилизатора, который относится к инверторному типу, управляет микроконтроллер.

Именно благодаря использованию инверторов и осуществлению двух процессов преобразования тока этот стабилизатор называют инверторным или же стабилизатором двойного преобразования.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: