Амперметр: виды, сфера использования, советы по выбору

Поделиться в соцсетях

На этом рисунке изображена схема подключения вольтметра и амперметра с отдельным токоизмерительным шунтом к блоку питания.

Параметры не ниже выходных БП: Uвх — Никакого спама, только полезные идеи!

Питание прибора должно находиться в рамках 4, В. Это и послужило поводом для написания данной статьи, ведь, скорее всего, мы не одни, которые столкнулись с вопросами подключения WR к цепям измерения.

Нижний начинается не от 0, и даже верхний предел вызывает сомнения, в даташите на HT Holtek он ограничен 24V, оригинального даташита не нашел. Также в Интернете встречаются иные модификации этого модуля, но суть переделок от этого не меняется — если Вам попался не такой модуль, просто скорректируйте схему по плате, выпаяв индикатор или прозвонив цепи тестером и вперед! С2 — предположительно 0. Первые три шнура чаще всего объединены для удобства.

Метки: вольтметр, амперметр

На этом рисунке изображена схема подключения вольтметра амперметра первой модели к зарядному устройству из компьютерного блока питания. Поэтому я решил написать специально отдельную статью, в которой подробно расскажу, как и каким образом подключить китайский вольтметр амперметр к зарядному устройству или самодельному регулируемому блоку питания. Таким же образом нужно соединить тонкий красный и желтый контакты. Потребление энергии менее 20 мА.

Подав питание на схему, индикатор начнет светиться. Большинство моделей имеют на своем корпусе специальные резисторы. Не сразу и не вовремя выяснилось, что вход питания у него гальванически связан с минусовым входом шунта. Толстые провода: Черный минус амперметра, синий выход амперметра, красный вход вольтметра. Вывод — вполне сносный измерительный прибор, позволит примерно понять проходящий ток и измерить напряжение, но только до 24 вольт.

Как подключить вольтамперметр к зарядному устройству — подборка схем

Разрешение 0,28 дюйма. Также BY42A можно встретить в двух вариантах исполнения платы, но цветовая маркировка проводов остается прежней. На AliExpress предлагается похожий измеритель на стм8с, но если посмотреть распиновку, это не он. Минус внешнего источника подать на общий провод схемы. Данный вольтметр, амперметр удобен еще и тем, что он реализуется в уже откалиброванном состоянии.

Это вносит ощутимую погрешность при питании индикатора от того-же источника, с которого измеряется ток погрешность вплоть до ампера с моим шунтом на 50А! Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4. Достаточно будет подключить зарядное, где установлен вольтамперметр к батареи, и мы увидим какое сейчас на ней напряжение. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы.
Вольтметр 100V + амперметр 50А подключаем шунт digital voltmeter ammeter

Измерение переменного и постоянного тока

Приборы активно используются в радиотехнике. Ими замеряют слабые токи на различных участках схем печатных плат, тестируют радиодетали на пригодность для дальнейшего использования.

С помощью МА можно быстро выявить повреждённый участок электрической цепи, её обрыв или короткое замыкание. Прибором можно контролировать состояние литиевых аккумуляторных батареек.

Без миллиамперметра пpaктически невозможно собрать любую радиосхему, починить радиотехническое устройство.

Для исследования слабых переменных и постоянных токов применяют разные типы стрелочных приборов. Универсальный мультиметр может измерять оба типа электрического тока.

Дополнительная информация. При замере уровня переменного тока необязательно соблюдать положение полярности клемм мультиметра, так как электрический поток движется в обоих направлениях.

Для измерения переменного тока применяют МА с обозначением на циферблате волнистой линии. На мультиметре для красного щупа выбирают гнездо, обозначенное тем же знаком. Затем указатель устанавливают в положение миллиамперметра в нужном диапазоне.

Чтобы сделать замер переменного тока, внутри измерительного прибора встроена схема из 4-х диодов. Диодные мостики не пропускают ток в обратном направлении. Поэтому МА измеряет уже постоянный ток, данные которого отражают параметры переменного напряжения в сети.

Прибор подключают в цепь последовательно с нагрузкой, то есть МА включают в разрыв цепи. Для замера постоянного тока прибор тоже подключают под нагрузкой, строго соблюдая полярность клемм щупов.

Описание

Приборы представляют собой щитовые приборы магнитоэлектрической системы с креплением подвижной части на кернах, с равномерной шкалой, с нулевой отметкой на краю или внутри диапазона измерений.

Принцип действия приборов основан на взаимодействии магнитного поля постоянного магнита с электрическим током, проходящим по обмотке рамки.

Конструктивно приборы выполнены в малогабаритных пластмассовых корпусах, защищающих измерительный механизм от загрязнений, повреждений, попадания пыли и брызг.

Приборы изготавливаются для эксплуатации в условиях умеренного, тропического климата, а так же для эксплуатации на морских судах. Приборы М42300.8, М42301.8, М4272.8, М4276.8 изготавливаются только для эксплуатации в условиях умеренного климата.

По согласованию с потребителем приборы М42300, М42301 могут быть изготовлены в специальном исполнении и предназначены для работы в условиях с повышенными механическими характеристиками эксплуатации.

Приборы М4272, М4276 могут изготавливаться со сменными шкалами с обозначением (с).

Приборы М42301 могут изготавливаться в исполнении с возможностью подсветки шкалы с обозначением (п) и чистой шкалой.

Приборы относятся к невосстанавливаемым, одноканальным, однофункциональным изделиям.

Фотография общего вида приборов представлена на рисунке 1.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2.

а) общий вид прибора с нулевой отметкой шкалы внутри диапазона измерений

б) общий вид прибора с нулевой отметкой шкалы на краю диапазона измерений

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клеймения заполняется мастикой),

2 — поверительное клеймо (место клеймения заполняется мастикой).

3 — дата выпуска (краска штемпельная).

а) Схема пломбировки и клеймения микроамперметров, миллиамперметров, амперметров и вольтметров М42300, М42301

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клеймения заполняется мастикой),

2 — поверительное клеймо (место клеймения заполняется мастикой),

3 — дата выпуска (краска штемпельная).

б) Схема пломбировки и клеймения микроамперметров, амперметров и вольтметров М42303

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клеймения заполняется мастикой),

2 — поверительное клеймо (место клеймения заполняется мастикой).

3 — дата выпуска (краска штемпельная).

в) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М4264М

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клеймения заполняется мастикой),

2 — поверительное клеймо (место клеймения заполняется мастикой),

3 — дата выпуска (краска штемпельная).

г) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М4272, М4276

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клеймения заполняется мастикой),

2 поверительное клеймо (место клеймения заполняется мастикой),

3 — дата выпуска (краска штемпельная).

д) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М4278

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клеймения заполняется мастикой),

2 — поверительное клеймо (место клеймения заполняется мастикой),

3 — дата выпуска (краска штемпельная).

е) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М42607, М42608

п.З

(
Y «Г- г’

/\\ L.

iv __1J А

п.1 У V п.2

Обозначение на рисунке приборов:

1 — клеймо ОТК (место клейметтия заполняется мастикой),

2 — поверительное клеймо (место клеймения заполняется мастикой),

3 — дата выпуска (краска штемпельная).

ж) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М42609

Рисунок 2 — Схема пломбировки от несанкционированного доступа, обозначение места

нанесения знака поверки.

Как переделать вольтметр в амперметр постоянного тока

Шунт для амперметра. Или как сделать вольтметр из амперметра и наоборот.

Эту статью я решил написать, когда делал источник питания для своей домашней лаборатории. Из собственного опыта замечено, что на регулируемом блоке питания должен быть вольтметр, для оценки устанавливаемого напряжения. А так же амперметр, для приблизительной оценки тока потребляемого нагрузкой. Решено в новый источник питания установить эти полезные элементы: вольтметр и амперметр. Поискав в ящиках, нашел две подходящих измерительных головки (основной критерий — минимальные размеры). С максимальным током 50мкА и 30мА.

Сначала сделаем вольтметр из амперметра

Итак, перейдем к расчетам.

Самое простое сделать вольтметр из амперметра, я использую второй амперметр. Для расчетов нам понадобятся: максимальный ток отклонения стрелки — в моем случае 30мА, Максимальное напряжение, которое должен измерять наш вольтметр — 30В.

Используя закон Ома находим сопротивление: R=U/I, R=1кОм.

Значит шунт (резистор) сопротивлением 1кОм нужно подключить последовательно с амперметром. При этом мы получим вольтметр. Т.е. если через такую последовательную цепь будет протекать ток в 30мА, то падение напряжения на этом резисторе равно 30В. В моем случае мне даже не нужно изменять шкалу прибора, достаточно наклеить букву «V», чтобы было понятно, что это вольтметр.

Следует помнить, что через такой вольтметр всегда будет течь ток 0-30мА, в зависимости от измеряемого напряжения от 0-30В. А так как он используется в блоке питания это не критично. Так же не следует забывать, что резистор должен быть подходящей можности, которую определим по формуле P = I*I*R получим P=30мА*30мА*1кОм=0,9Вт ставим с запасом не меньше 1Вт.

Надо ещё учесть внутреннее сопротивление прибора. Тогда добавочный резистор считается так: Rд=Uп/Iи-Rи. Rд — сопротивление добавочного резистора; Uп — макс. значение выбранного предела измерения напряжения; Iи — ток полного отклонения выбранного амперметра; Rи — внутреннее сопротивление (рамки прибора) выбранного амперметра, оно указывается.

Делаем амперметр из амперметра у которого маленькая шкала.

У первого амперметра шкала 50мкА это очень мало, мне нужно 1,5А. Чтобы расширить диапазон измерения амперметра, нужно установить шунт, но не последовательно, а параллельно с измерительной головкой. Получается ток будет разветвляться и одна часть потечет через амперметр, а другая через сопротивление. Нужно подобрать такое сопротивление, чтобы ток в 1,5А делился на два, 50мкА через амперметр, а остальной ток через резистор.

Для расчетов понадобится знать сопротивление амперметра, но так как его я не знаю, то шунт буду изготавливать методом подгона. Для этого нужно взять медную проволоку диаметром 0,8-1мм длинной 1 метр и измерить ток, при котором стрелка отклоняется в крайнее положение.

Для этого понадобится регулируемый источник напряжения и нагрузка, я использовал автомобильную лампочку. Далее таким образом подгоняем шунт увеличивая длину проволоки если нужно уменьшить максимальный ток или укорачиваем проволоку если нужно увеличить максимальное значение шкалы амперметра.

У меня получился вот такой шунт в четыре слоя. Края я проклеил силиконовым клеем.

Следует помнить, что если случайно оторвется шунт, то через микроамперметр потечет большой ток и он выйдет из строя.

Амперметр из вольтметра делается по аналогии с первым вариантом, только шунт устанавливается не последовательно а параллельно. Также бывает, что в вольтметрах устанавливаются внутренние резисторы, убрав которые можно получить амперметр.

Следует помнить что амперметр должен иметь минимальное сопротивление, а вольтметр должен обладать очень высоким сопротивлением.

Источник

Какие бывают амперметры?

В зависимости от типа амперметры делятся на устройства для измерения:

  • постоянного тока;
  • переменного тока.

Существуют следующие типы амперметров:

  • магнитоэлектрические — служат для измерения малых величин постоянного электрического тока;
  • электромагнитные — обеспечивают измерение переменного (частота 50 Гц) и постоянного тока;
  • электродинамические — выполняют измерение переменного (частота до 200 Гц) и постоянного тока;
  • термоэлектрические — предназначены для измерения величины переменного электрического тока высокой частоты;
  • ферродинамические — представляют собой самопишущие приборы и применяются в автоматических системах измерения.

В зависимости от вида используемой шкалы эти приборы бывают:

  • стрелочные;
  • электронные (цифровые).

Принцип действия

Способ измерения основывается на работе нескольких элементов:

  1. На оси между постоянными магнитами располагается якорь со стрелкой.
  2. Благодаря воздействию магнитов, стальной якорь находится вдоль силовых линий, в нулевой позиции.
  3. При подаче тока появляется магнитный поток с силовыми линиями, перпендикулярными магнитам.
  4. Вследствие этого воздействия якорь стремится повернуться под прямым углом, чему мешает основное магнитное поле.
  5. Итоговое отклонение стрелки – результат взаимодействия двух потоков.


Принцип работы амперметра

Благодаря простому принципу работы амперметра, механические устройства долгое время отличались лишь материалом изготовления элементов.

Определение внутренних параметров милли(микро)амперметра

Если вы где-то у себя нашли миллиамперметр, но не знаете необходимого для каких-либо расчетов(например, шунта)значения его внутреннего сопротивления головки, то можно воспользоваться приведенной схемой на рис.4.
Замкнув вначале контакты выключателя SA1, необходимо установить переменным резистором R2 стрелку проверяемого индикатора PA1 на конечное деление шкалы. Если из-за параметров милииамперметра это не удается, необходимо установить резистор R1 с меньшим сопротивлением. Затем выключателем SA2 подключаем в электрическую цепь параллельно амперметру(милли или микро) резистор R3 и перемещением его движка добиваемся установки стрелки определяемого амперметра посередине шкалы. В таком состоянии сопротивление резистора будет соответствовать внутреннему сопротивлению головки милии или микроамперметра. Необходимо просто отключить SA2 и измерить на концах отключенного сопротивления R3 его значение. Измерив омметром общее сопротивление R1 и R2, и поделив на него значение поданного в результате измерений напряжения (по закону Ома) можно найти ток полного отклонения прибора.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство

Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

В соответствии с ГОСТ 8.401-80 все средства измерений делятся на классы точности, которые устанавливают в стандартах или технических условиях, содержащих технические требования к СИ, подразделяемым по точности. Классы точности СИ конкретного типа выбирают соответственно из ряда классов точности, регламентированных в стандартах или других НД на СИ рассматриваемого вида. В данных стандартах устанавливают конкретные требования к метрологическим характеристи­кам, отражающим уровень точности СИ этого класса.

Классы точности присваивают средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Как было указано выше, пределы основной и дополнительной погрешностей следует выражать в форме абсолютных, относительных или приведенных погрешностей в зависимости от характера измерения погрешностей в пределах диапазона измерений конкретного вида СИ.

Пределы допускаемой основной погрешности, выражаемые абсолютной систематической погрешностью, наиболее часто используются для характеристики погрешностей, возникающих по вине схем СИ. Однако их значение можно уменьшить за счет регулировки определенных элементов схем, вариации параметров влияния которых заметно сказывается на так называемых аддитивных и мультипликативных погрешностях.

Обозначение классов точности СИ в документации может осуществляться в форме абсолютных по­грешностей или относительных погрешностей (таблица 4.1).

При этом классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами. В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

В эксплуатационной документации на СИ конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности данного СИ.

Стандарт ГОСТ 8.401—80 предусматривает определенные обозначения классов точности на СИ. В соответствии с указанным стандартом условные обозначения классов точности наносятся на циферблаты, щитки и корпуса СИ. Они включают числа, прописные буквы латинского алфавита или римские цифры. За исключением технически обоснованных случаев, вместе с условным обозначением класса точности на циферблат, щиток или корпус СИ должны быть нанесены обозначения стандартов или ТУ, устанавливающих технические требования к этим СИ.

На СИ одного и того же класса точности, которые эксплуатируются в различных условиях, следует наносить обозначение условий их эксплуатации, предусмотренные в стандартах или ТУ на СИ.

Правила построения и примеры обозначения классов точности приведены в таблице 4.1.

Таблица 4.1. Формулы вычисления погрешностей и обозначение классов точности СИ

Класс точности

Это основная характеристика амперметра, которая согласно еще советскому действующему ГОСТ 1845-59, определяет границы возможных погрешностей.

Для всех электроизмерительных приборов, к которым он относится, класс точности (Кл) обозначается в числовом виде по значению, соответствующему предельной допустимой приведенной погрешности δпр, в %.

Все электрические амперметры подразделяются по точности на 8 классов, а затем по группам, которые является важным признаком их классификации:

  • Образцовые: 0.05–0.1–0.2;
  • лабораторные: 0.5–0.1;
  • технические: 1.5–2.0–4.0.

Образцовые применяют в электроизмерительных процессах для определения класса точности технических и лабораторных амперметров. Лабораторные применяются в научно-технических процессах при электротехнических исследованиях контроля ведения режимов, например на котельных, ГЭС, ТЭЦ и АЭС.

Виды миллиамперметров

Амперметр — что это такое и устройство прибора

Приборы бывают двух видов:

  1. Приборы со стрелочной головкой.
  2. Приборы с цифровым индикатором.

Приборы со стрелочной головкой

Аналоговое устройство оснащено циферблатом со стрелкой. Если на экране нанесены буквы «mA», подчёркнутые сплошной линией, то это миллиамперметр (МА) постоянного тока. Обычно МА работает в двух диапазонах – 5 мА и 50 мА, то есть данные получают в тысячных долях ампера.


Аналоговый прибор

МА со стрелочной индикацией по принципу действия бывают:

  • магнитоэлектрические;
  • электромагнитные;
  • электродинамические;
  • ферродинамические.

Принцип действия стрелочной измерительной головки

Основной принцип действия стрелочной головки заключается в том, что в центре конструкции расположена катушка со стрелкой. Под воздействием переменного магнитного поля катушка вращается на оси, вместе с этим изменяет положение стрелка относительно градуированной шкалы. Такие приборы относят к миллиамперметрам магнитоэлектрического действия.

Электромагнитные, электродинамические и ферродинамические амперметры обладают низкой чувствительностью, поэтому их применяют для измерения больших величин тока.

Приборы с цифровым индикатором

На смену многочисленным измерителям с цифровыми экранами различного строения пришли компактные приборы с жидкокристаллическими дисплеями – мультиметры. Они способны производить измерения практически всех параметров электрического тока и радиокомпонентов.

Тестер представляет собой небольшой пластиковый корпус с ЖК экраном и органами управления на передней панели. Он может работать в режиме миллиамперметра и при определённом включении функционирует, как микроамперметр.


Цифровой МА

Обратите внимание! Во время работы с прибором нужно строго следить за полярностью щупов. Чёрный провод должен быть всегда подключён к гнезду со знаком «COM», иначе перегорит плавкий предохранитель прибора

Подключение минивольтметров

Для некоторых отсутствие отдельного блока питания является недостатком. Но если есть отдельный источник питания, то можете подключить его отдельно. Еще одним недостатком является низкое внутреннее сопротивление, которое ограничивает использование модуля только для источников питания, зарядок и аналогичных схем. Другим недостатком является ограниченный диапазон измерения снизу.

Это измерительное устройство в схемном плане ничем не отличается от трехпроводного исполнения, для третьего провода (измерительного) имеется дополнительное поле для пайки. Достаточно снять перемычку.

Преимущество двухпроводной системы заключается в более низкой цене, которая компенсирует многие проблемы этого модуля.

Простейший вольтметр является двухпроводным — он питается от напряжения которое в то же время измеряет, то есть не нужен дополнительный источник питания для индикатора. И главное — после использования другого источника питания можем измерить напряжение от 0 В.

Виды амперметров

Классифицировать устройства можно по способу индикации. Наиболее широко распространены аналоговые амперметры – с градуированной шкалой, по которой движется стрелка. Современные приборы имеют цифровой дисплей, на котором отображается значение величины тока.

Стрелочные амперметры

Приборы со стрелочной головкой

Разбираемся с электроизмерительными приборами

Стрелочные амперметры постепенно исчезают. Они отличаются более сложным устройством, чем современные модели, и обладают ограниченной областью применения. Еще один недостаток – меньший срок работы из-за наличия большего количества механических деталей. При этом современные условия иногда требуют измерения меньших величин, чем требуется для отклонения стрелки даже на одно деление. Из-за этого стрелочные приборы приходится модифицировать усилителями сигнала.

Интересно. Долгое время эти приборы не имели аналогов – точность измерений была достаточно высокой. Однако развитие электротехнической промышленности позволило разработать более дешевые в изготовлении приборы.

Принцип действия стрелочной головки

Еще одна сложность при использовании стрелочного амперметра – принцип работы стрелки, отличающийся в разных системах измерения:

  1. Магнитоэлектрическая. Стрелка поворачивается по линейной шкале, пропорциональной силе тока. Вращающий момент задается током, проходящим через обмотку рамки.
  2. Электромагнитная. Стрелка закреплена на сердечнике из ферромагнита, который двигается внутри катушки.
  3. Электродинамическая. Используются две катушки с последовательным либо параллельным соединением. На подвижной – закреплена стрелка, поворачивающаяся от взаимодействия между токами катушек.

Во всех типах прибора используется корректор – специальный винт, соединенный с пружиной. Он необходим для установки стрелки в нулевое положение.

Игнорирование начальной регулировки может привести к неправильному отображению величины измеряемого тока, так как стартовое положение стрелки будет находиться левее нуля.

Приборы с цифровым индикатором

Цифровые устройства вытесняют аналоговые, благодаря ряду отличий:

  • простота изготовления – дешевле производить, легче собрать самостоятельно;
  • возможность измерения меньших величин;
  • отсутствие износа подвижных частей – дольше служат, не требуют замены элементов;
  • наглядная и удобная индикация;
  • меньший вес.

Цифровой амперметр

Переход к цифровому исполнению позволил шире применять приборы в быту. Они проще в использовании – вертикальное и горизонтальное расположение не влияет на работу. Также они лучше защищены от внешних воздействий, например, механических ударов по корпусу.

Сфера применения

Аналоговые и цифровые миллиамперметры требуются в различных отраслях промышленности, научных лабораториях и прочих учреждениях. Особая нужда в этих приборах ощущается в сферах радиотехники, электроники и приборостроении.

Миллиамперметры пользуются большим спросом у домашних радиомастеров, в небольших радиотехнических мастерских и сервисах технического обслуживания автомобилей. У всех предприятий, которые занимаются ремонтом различного электрооборудования, есть миллиамперметры.

Аналоговые приборы занимают стационарное положение в измерительных цепях различного электрического оборудования. При них не нужно делать специальные замеры параметров электрического тока. Стрелочные устройства постоянно контролируют состояние энергетического потока на важных участках электрической цепи. Им не нужно автономное питание, потому что приборы используют энергию измеряемой цепи.

Аналоговые МА снабжены регулировочным винтом, которым обнуляют предыдущие показания. Этим добиваются получения данных в режиме реального времени.

Роль миллиамперметров в энергетической сфере деятельности человека неизмеримо велика. Разнообразие приборов различной конструкции и принципов действия позволяет потребителю выбрать наиболее подходящий по оптимальной цене.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Как подключить амперметр

Амперметр необходимо подключать в строгой последовательности – он располагается между источником электропитания и нагрузкой. Для проведения правильных измерений необходимо четко знать тип напряжения в источнике электропитания – постоянный или переменный ток. Использовать необходимо только соответствующий для конкретного типа тока прибор.

Разъясним детально, как необходимо подключить амперметр, чтобы получить точные и корректные показатели тока:

  • требуется выбрать необходимый шунт, максимальный ток которого ниже тока, который нужно замерять;
  • затем амперметр подключается к шунтам специальными гайками, расположенными на самом амперметре;
  • подключение амперметра осуществляется только после обесточивания измеряемого прибора посредством разрыва электрической цепи;
  • включите амперметр в цепь с шунтом;
  • соедините элементы правильно, чтобы обеспечить четкое соблюдение полярности для корректного отображения данных;
  • подключите электропитание, после чего можно считывать результаты на амперметре.

В качестве мер предосторожности отметим, что ни при каких обстоятельствах не следует подключать амперметр в розетку без какой-либо нагрузки. Поскольку устройство обладает небольшим входным сопротивлением, при подключении без нагрузки он просто сгорит

Сферы применения амперметров включает как крупные промышленные предприятия по выработке и распределению электроэнергии, так и строительство, автомобилестроение, наука. Также они применяются в бытовой сфере среди владельцев автомобилей для проведения самостоятельных измерений автомобильных приборов.

Для чего предназначены токоизмерительные клещи?

Что такое дроссель?

Что такое петля фаза-ноль простым языком — методика проведения измерения

Что такое делитель напряжения и как его рассчитать?

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Что такое контактор: назначение, принцип работы, виды, схемы подключения

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: