Как подключить много лампочек к одному проводу

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

Получается, можно записать, что

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на  любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3  . Но как это сделать?

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Следовательно,

UR1 = IR1 =1×2=2 Вольта

UR2 = IR2 = 1×3=3 Вольта

UR3 = IR3 =1×5=5 Вольт

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Получается

U=UR1+UR2+UR3

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Последовательное соединение

Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, – распределяется согласно собственным сопротивлениям. При этом ток равняется частному напряжения и сопротивления, т.е.:

Где Rобщ – сумма сопротивлений всех элементов последовательно соединенной цепи.

Чем больше сопротивление – тем меньше ток.

Подсоединение потребителей последовательно

Чтобы соединить два и больше источника света последовательно, нужно концы от патронов соединить между собой так, как изображено на картинке, т.е. у крайних патронов останется по одному свободному проводу, на которые мы и подаем фазу (P или L) с нулем (N), а средние патроны соединяются друг с другом одним проводом.

  • если перегорает одна – не горят и остальные;
  • если использовать приборы разной мощности, те, что больше, – практически не будут светиться, те, что меньше, – будут светиться нормально;
  • все элементы должны быть одинаковой мощности;
  • нельзя в светильник с таким соединением включать энергосберегающие лампы (светодиодные и компактные люминесцентные лампы).

Такое соединение отлично подходит в ситуациях, когда нужно создать мягкий свет, например, для бра. Так соединяются светодиоды в гирляндах. Огромный минус – это то, что при сгорании одного звена не светят и другие.

Последовательная схема

Последовательная схема применяется, когда источник сигнала ( контур) не находится под постоянным напряжением. Параллельная схема применяется, когда источник сигнала ( контур) находится под постоянным напряжением и передача сигнала на детектор осуществляется через разделительный конденсатор.

Последовательная схема имеет меньшую протяженность трубопроводов, но менее надежна в работе, требует установки насосных агрегатов на промежуточных этажах, что крайне нежелательно из-за вибрации и шума.

Последовательная схема характеризуется последовательным включением магнитных сопротивлений участков магнитной цепи, где Rw. Однако с точки зрения монтажа разносторонние выводы не всегда удобны.

Последовательная схема прозвучивания обладает существенными недостатками, главными из которых являются: сложность синхронизации перемещений и записи; использование механизма разгона и перемены направления движения преобразователей, что приводит к относительно быстрому изнашиванию механизмов; трудность стабилизации акустического контакта; относительная сложность и большая масса механизма сканирования; низкая скорость контроля ( не более 15 м / ч) вследствие ограничения скорости перемещения преобразователей при многоцикловом продольно-поперечном сканировании. Подобные схемы практически не используют при разработке современных установок автоматизированного контроля.

Последовательная схема ремонта подразумевает ведение ремонтно-вос-становительных работ на всех местах ремонта одной колонной или бригадой.

Последовательные схемы расположения гидродинамической и механической передач просты, поэтому на них останавливаться не будем. Рассмотрим принципиальную схему с параллельным потоком мощности и с использованием вращения направляющего аппарата.

Схемы организации выполнения метода ФСА.

Последовательная схема организации ФСА в основном используется на малых и средних по численности работников и уровню технологии предприятиях. Параллельная схема организации ФСА в основном используется на больших по численности работников, наукоемких или сложных по технологии предприятиях, смешанная схема — на уровне крупных отраслей или экономики страны.

Последовательная схема соединения калориферов по воде более рациональна, так как она позволяет увеличивать скорость воды в трубках, что повышает теплопроизводительность калориферов и улучшает гидравлическую устойчивость теплосети. Только в отдельных случаях, когда расчетное сопротивление калориферов превышает величину располагаемого напора, следует применять комбинированную ( последовательно-параллельную) схему.

Последовательная схема питания анодной цепи приведена на рис. 3 — 19, а. Здесь источник, контур и лампа по высокой частоте и постоянной составляющей включены последовательно.

Последовательную схему питания чаще применяют на коротких и ультракоротких волнах.

Диодный вентиль ИЛИ. А и В — входы, Q — выход.

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме Перегорание отдельного элемента лучевой модели не влияет на работу остальных Накал полный на всех лампочках

Можно подключить люстру с несколькими лампами

Немного соединительных контактов

Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодке При щлейфной модели нарушение одного соединения мешает работе остальных
Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питания При перегорании отдельного источника остальные работают Схема не работает, если диоды подсоединяются через один резистор Конструкция громоздкая и дорогая из-за большого количества деталей

При выходе из строя отдельного элемента на остальных увеличивается нагрузка

Другие схемы оптом

Если у вас есть автоматы, тогда будет проще. Но как же выполнить эту работу когда появляется такая необходимость.

Чтобы разместить проводку в распределительном коробе, к нему нужно протянуть кабеля, питающие все помещение, затем провода, выходящие от выключателя и лампочки.

В ситуации с коридором, эта схема обеспечит следующий вариант управления освещением.

Человек, выполняющий работы должен уметь обращаться со всеми используемыми инструментами. Во втором — лампочки будут зажигаться двумя группами.

Если предстоит установка выключателя с двумя клавишами, понадобится второй преобразователь. Как подключить двойной выключатель на две лампочки На фото показан процесс подключения двух ламп к двухклавишному выключателю По мнению опытных специалистов недопонимание в вопросе монтажа данного оборудования по большей части вызывает отсутствие примера.

Данный выключатель имеет шесть контактов: два входа и четыре выхода. Например, в квартире это может быть группа точечных светильников в потолке. Сюда же думаю можно отнести и датчики движения.

Ниже представлены несколько схем подключений, подразумевающих наличие ламп. Все скрутки должны быть тщательно изолированы изоляционной лентой.

Обязательно прочитайте ее, очень полезная статья. В итоге получаем подключение рабочих жил лампы и общей электропроводки через выключатель. Далее остается все правильно соединить.
Схема подключения лампочек в самодельном инкубаторе

Условное обозначение розетки на схеме

Одним из наиболее распространенных элементов домашней электросети является электрическая розетка. На схеме она может выглядеть в виде различных обозначений, которые зависят от типа и конструкции этого устройства.

Важнейшим этапом обустройства электрической проводки является составление плана размещения всех ее элементов.

Грамотное нанесение на электрическую схему всех составных частей электросети обеспечивает правильность планирования необходимого количества материалов, а также высокий уровень электробезопасности.

Совет

Правильно составленная схема значительно облегчает выбор типов необходимого оборудования.

План электрической проводки составляется с учетом масштаба помещений и особенностей его планировки.

Руководящие документы

Для того чтобы унифицировать обозначения, используемые в электрических схемах, еще в советское время был принят ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах».

В соответствии с этим документом, для обозначения всех элементов электросети используются простейшие геометрические фигуры, позволяющие легко наносить, а также идентифицировать тот или иной элемент на электрической схеме.

Жесткие требования к выполнению подобных чертежей исключают путаницу и двоякое толкование всех нанесенных на схеме символов, что крайне важно при выполнении монтажных работ в электрической сети

Обозначения элементов открытой установки

Простейшая двухполюсная электрическая розетка открытой установки без заземляющего контакта изображается на электрической схеме в виде полукруга с чертой, проведенной перпендикулярно к его выпуклой части.

Обозначение сдвоенной розетки отличается от предыдущего наличием двух параллельных линий. Графический символ, соответствующий трехполюсному изделию, представляет собой полукруг, к выпуклой части которого примыкают три линии, сходящиеся в одной точке и расположенные веером.

Розетки для скрытой электропроводки

Скрытая электропроводка является наиболее распространенным типом домашней электрической сети. Для ее прокладки используются устройства, встраиваемые в стену при помощи специальных монтажных коробок.

Единственным отличием обозначения подобных розеток от приведенного выше рисунка является перпендикуляр, опускаемый от середины прямого отрезка к центру окружности.

Устройства с повышенной защитой от пыли и влаги

Рассмотренные розетки не отличаются высоким уровнем защиты от проникновения в их корпус твердых предметов, а также влаги. Такие изделия могут применяться во внутренних помещениях, где условия эксплуатации исключают подобные воздействия.

Что касается устройств, предназначенных для установки на открытом воздухе или, например, в ванных комнатах, то согласно принятой классификации степень их защиты должна быть ниже IP44 (где первая цифра соответствует уровню защиты от пыли, вторая – от влаги).

Такие розетки обозначаются на схеме в виде полностью закрашенного черным цветом полукруга. Как и в предыдущем случае, двухполюсные и трехполюсные влагозащищенные розетки обозначаются соответствующим количеством отрезков, примыкающих к выпуклой части полукруга.

Выключатели

Выключатель на схеме обозначается в виде окружности, к которой под углом 45 с наклоном в правую сторону проведена черта, имеющая на конце один, два или три перпендикулярных отрезка (в зависимости от количества клавиш изображаемого выключателя).

Изображение выключателей скрытой установки такое же, только отрезки на конце наклонной черты проводятся в обе стороны от нее на одинаковое расстояние.

Стоит обратить внимание на изображение проходных выключателей, которое напоминает два обычных выключателя, зеркально отраженных от центра одной окружности

Блоки розеток

Нередко в плане домашней электросети необходимо предусмотреть установку блоков, включающих в себя различное количество наиболее распространенных элементов – розеток и выключателей.

Простейший блок, содержащий в своем составе двухполюсную розетку, и одноклавишный выключатель скрытой установки изображается в виде полукруга, от центра которого проведен перпендикуляр, а также линия под углом 45 , соответствующая одноклавишному выключателю.

Аналогичным образом наносятся на схему блоки, содержащие различное количество розеток и выключателей. Например, блок скрытой установки, имеющий в своем составе двухполюсную розетку, а также одноклавишный и двухклавишный выключатели, имеет обозначение:

Как происходит подключение лампочек последовательно или параллельно

Чтобы понять, как подключать лампочки — последовательно или параллельно — важно рассмотреть преимущества и недостатки обоих соединений, которые выплывают только на практике

Последовательно

Подобное соединение редко применяется в квартирах или домах. Для бытового использования больше подходит смешанный способ. Последовательно соединяют лампочки, если сооружают гирлянду или монтируют свет в длинном коридоре.

При подключении лампочек друг за другом следует учитывать некоторые особенности:

  • через устройства будет протекать ток одинаковой силы;
  • если произойдет резкий спад напряжения, воздействие распределится равномерно на все объекты цепочки;
  • также равномерно распределяется мощность на каждый элемент цепи.

Обратите внимание! Из-за последовательности спайки и равномерного распределения мощности стандартные лампочки на 220 В выдают свет не в полную силу. Чем больше ламп подключено в сеть, тем меньше света они будут производить

Если в схему встраивать лампы накаливания с отличающейся мощностью, ярче горит та, что имеет меньшую энергоемкость (обладает большим внутренним сопротивлением). Это объясняется тем, что напряжение при более высоком сопротивлении увеличивается.

Последовательное соединение лампочек в электросети обеспечивает более щадящий режим работы для приборов благодаря равномерно распределяемой мощности (нагрузке). Кроме этого, для фактического соединения потребуется меньшее количество кабеля (по длине).

  • при выходе из строя одного элемента обесточивается вся система;
  • при подключении ламп накаливания разной мощности невозможно обеспечить равномерное освещение помещения.

Важный момент — в последовательную электрическую схему нельзя включать энергосберегающие (светодиодные) лампочки. Для их правильной работы требуется стабильное напряжение в 220 В, подаваемое равномерно на каждый элемент (параллельное соединение).

Параллельно

Основное отличие параллельной схемы соединения элементов — равнозначная подача питания к каждой лампочке в сети независимо от их общего количества. Это значит, что к каждой лампе подается свой ток. Провода, соединяющие детали цепи, подключаются параллельным образом.

Преимущества данной техники сборки электрической цепи:

  • если один элемент сгорит (лампа или кабель), остальные продолжат работать в прежнем режиме;
  • лампочки накаливания горят настолько мощно, насколько позволяют их характеристики;
  • можно включать в цепь энергосберегающие элементы;
  • чтобы подключить новую лампу в комнате, достаточно вывести из соединения потолочной люстры необходимое число фазных проводников и соединить их в группу.

Основной недостаток — большой расход материала. До каждой точки необходимо вести отдельный провод, что увеличивает протяженность проводов в несколько раз (по сравнению с последовательным соединением).

Обратите внимание! В большинстве случаев используют смешанное соединение проводов и элементов. Основой является параллельное подключение нескольких распредкоробок последовательного типа

На отдельных ветках лампочки соединяют последовательно (например, в длинном коридоре, над кроватью, в других подобных местах жилого помещения).

Упражнения

Упражнение №1

Цепь состоит из двух последовательно соединённых проводников, сопротивление которых $4 \space Ом$ и $6 \space Ом$. Сила тока в цепи равна $0.2 \space А$. Найдите напряжение на каждом из проводников и общее напряжение.

Дано:$R_1 = 4 \space Ом$$R_2 = 6 \space Ом$

$I = 0.2 \space А$

$U_1 — ?$$U_2 — ?$$U — ?$

Показать решение и ответ

Скрыть

Решение:

Используя закон Ома для участка цепи,  мы рассчитаем значения напряжения на концах первого и второго проводников. Сила тока на всех участках цепи одинакова.

Напряжение на концах первого проводника:$I = \frac{U_1}{R_1}$,$U_1 = IR_1$,$U_1 = 0.2 \space А \cdot 4 \space Ом = 0.8 \space В$.

Напряжение на концах второго проводника:$I = \frac{U_2}{R_2}$,$U_2 = IR_2$,$U_2 = 0.2 \space А \cdot 6 \space Ом = 1.2 \space В$.

Общее напряжение будет равно сумме напряжений на концах каждого проводника:$U = U_1 + U_2$,$U = 0.8 \space В + 1.2 \space В = 2 \space В$.

Ответ: $U_1 = 0.8 \space В$, $U_2 = 1.2 \space В$, $U = 2 \space В$.

Упражнение №2

Для электропоездов применяют напряжение, равное $3000 \space В$. Как можно использовать для освещения вагонов лампы, рассчитанные на напряжение $50 \space В$ каждая?

Такие лампы можно соединить последовательно в одну цепь. Главное, чтобы их суммарное напряжение не превышало общее. Рассчитаем количество таких ламп, которое мы можем включить в цепь.

Дано:$U = 3000 \space В$$U_1 = 50 \space В$

$n — ?$

Показать решение и ответ

Скрыть

Решение:

Все лампы будут иметь одинаковое напряжение в $50 \space В$. Напряжение на всей цепи равно сумме напряжений на каждой лампе. Тогда:$n = \frac{U}{U_1}$,$n = \frac{3000 \space В}{50 \space} = 60$.

Получается, что в таком электропоезде мы можем разместить 60 ламп для освещения вагонов, соединив их последовательно.

Ответ: при последовательном соединении мы можем использовать $n = 60$ ламп.

Упражнение №3

Две одинаковые лампы, рассчитанные на $220 \space В$ каждая, соединены последовательно и включены в сеть с напряжением $220 \space В$. Под каким напряжением будет находиться каждая лампа?

Дано:

$U = 220 \space В$

$U_1 — ?$$U_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Лампы соединены последовательно. Значит, $U = U_1 + U_2$.

Если лампы одинаковые, то они имеют одинаковые сопротивления $R$. Сила тока тоже одинакова в каждой лампе. Из этого мы можем сделать вывод, что напряжение на лампах будет одинаковым:$U_1 = IR$, $U_2 = IR$, $U_1 = U_2$.

Тогда мы можем записать следующее:$U = U_1 + U_2 = 2U_1$.

Рассчитаем напряжение на одной лампе:$U_1 = U_2 =  \frac{U}{2}$,

$U_1 = U_2  = \frac{220 \space В}{2} = 110 \space В$.

Ответ: $U_1 = U_2 = 110 \space В$.

Упражнение №4

Электрическая цепь состоит из источника тока — батареи аккумуляторов, создающей в цепи напряжение, равное $6 \space В$, лампочки от карманного фонаря с сопротивлением в $13.5 \space Ом$, двух спиралей c сопротивлением $3 \space Ом$ и $2 \space Ом$, ключа и соединительных проводов. Все детали цепи соединены последовательно. Начертите схему цепи. Определите силу тока в цепи, напряжение на концах каждого из потребителей тока.

Схема такой цепи изображена на рисунке 5.

Рисунок 5. Схема электрической цепи к упражнению №4

Дано:$U = 6 \space В$$R_1 = 13.5 \space Ом$$R_2 = 3 \space Ом$$R_3 = 2 \space Ом$

$I — ?$$U_1 — ?$$U_2 — ?$$U_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Сначала рассчитаем общее сопротивление на всей цепи:$R = R_1 + R_2 + R_3$,$R = 13.5 \space Ом + 3 \space Ом + 2 \space Ом = 18.5 \space Ом$.

Теперь используем закон Ома для того, чтобы рассчитать силу тока в цепи:$I = \frac{U}{R}$,$I = \frac{6 \space В}{18.5 \space Ом} \approx 0.32 \space А$.

Сила тока на каждом участке цепи при последовательном соединении элементов будет одинакова. Теперь мы будем использовать закон Ома отдельно для каждого проводника.

Рассчитаем напряжение на лампочке от карманного фонаря:$U_1 = IR_1$,$U_1 = 0.32 \space А \cdot 13.5 \space Ом \approx 4.3 \space В$.

Рассчитаем напряжение на первой спирали:$U_2 = IR_2$,$U_2 = 0.32 \space А \cdot 3 \space Ом \approx 1 \space В$.

Рассчитаем напряжение на второй спирали:$U_3 = IR_3$,$U_3 = 0.32 \space А \cdot 2 \space Ом \approx 0.6 \space В$.

Ответ: $I \approx 0.32 \space А$, $U_1 \approx 4.3 \space В$, $U_2 \approx 1 \space В$, $U_3 \approx 0.6 \space В$.

Лучевое подключение

Лучевое соединение более надежно, но устанавливать проводку этим способом сложнее. Вам потребуется больше кабеля. Соединение должно получиться более качественным, чтобы все провода держались там, где их закрепили. Удобный способ монтажа — с использованием клеммной колодки, когда с одной стороны проводите фазу и разводите на контакты. С другого конца подводите отрезки кабеля, отходящие к светильникам.

Похожий способ — использовать клеммники Ваго. Он прост и быстр в исполнении. Вам нужно зачистить провода и вставить их в гнезда.

Вы можете воспользоваться еще одним вариантом — скрутите провода, обожмите плоскогубцами и сварите. Соединение получается неразъемным, однако достаточно прочным.

Если вы разбираетесь в электрике, то справитесь с монтажом светильников самостоятельно. Если сомневаетесь, обратитесь к электрикам, которые рассчитают количество электроприборов на вашу площадь, правильно разметят места установки и выполнят монтаж.

Методы соединения проводов

В соответствии с п.2.1.21. ПУЭ, соединение проводов можно осуществлять только методами сварки, пайки, опрессовки и сжимов. Как видим, излюбленный метод доморощенных электриков, скрутка, не входит в перечень разрешенных методов соединения.

А из всех представленных разрешенных методов наиболее оптимальным для использования в домашних условиях является сжим. Это может быть винтовое, болтовое или пружинное соединение.

  • Для монтажа болтовых и винтовых соединений промышленность сейчас выпускает большое количество самых разнообразных клеммных соединений. Их цена достаточно не велика, а удобство монтажа находится на высоком уровне.
  • Отдельно хотелось бы сказать о пружинных клеммах. Я сам не являюсь сторонников пружинок, распорок и тому подобных соединений, но как-то раз довелось стать свидетелем испытаний одного из таких клеммников.
  • Это были клеммы WAGO. На испытательной установке мы плавно поднимали ток, протекающий через клемму, пока наш медный провод в 4 мм 2 не перегорел. При этом величина тока составляла 100А. После этого мы достали клеммник и не обнаружили на нем никаких дефектов. Это заставило изменить мое мнение о таких пружинных клеммниках, и поэтому вам я советую присмотреться к ним повнимательнее.
  • Так же стоит отметить, что отдельным преимуществом таких клеммников является возможность соединения алюминиевых и медных проводов. В обычных же условиях это можно осуществлять только через латунную вставку.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна

При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Смешанное соединение проводников в электрической цепи

На практике сборку электроцепей, как правило, проводят таким метод, который предусматривает смешанное соединение проводников. Это комбинированное решение, которое сочетает оба способа. Обычно для монтажа основной сети используют параллель, а отдельные потребители при необходимости объединяют в последовательную сеть.

При расчете и сборке смешанных соединений сопротивлений обязательно должны учитываться особенности, преимущества и недостатки обоих методов подключения. В ходе проектирования, схему целесообразно разбить на отдельные части и выполнить расчет в по физическим законам, которые справедливы для последовательного и параллельного соединения. После этого, составные части объединяют в единую схему.

Частые ошибки при сборке схемы и подключении выключателя

Неграмотный специалист чаще всего вместо фазы вводит в выключатель ноль. Светильники могут работать, но в выключенном состоянии они будут под напряжением, что опасно при необходимости заменить лампы.

По неопытности заводят в выключатель и фазу, и ноль.

Третья ошибка – присоединение питающего провода на отвод вместо общего контакта. В результате работает только часть люстры.

Случается, что нулевой провод осветительного прибора подключается не к нулю в коробке, а к фазе.

Чтобы избежать ошибок с выключателем, следует внимательно отнестись к проводам. Желательно перед установкой выключателя промаркировать их, чтобы в процессе монтажа соединить одноименные.

Подготовка к работе

Определиться с выбором вида розетки

Существует огромное разнообразие электрических розеток, отличающихся по назначению, по типу конструкции, по способу установки и по наличию дополнительных функций. В данном случае мы будем рассматривать розетки, используемые в России и рассчитанные на напряжение 220 В.

В зависимости от вида отличается и способ монтажа розеток.

Розетка советского образца, без заземления. Данный вид розетки предназначен для электроприборов, корпус которых не требуется заземлять. Основной их недостаток, помимо отсутствия возможности заземления, в том, что вилки современных электроприборов просто не входят в разъемы розеток из-за разницы в диаметрах и наличия боковых выступов. Поэтому в данную розетку можно подключать только электроприборы старого образца или малой мощности с соответствующим типом вилки. «Евророзетка» с заземлением. Подходят для всех современных электроприборов

Основные преимущества: плотный контакт, имеется дополнительный контакт для подключения заземляющего провода, что очень важно для исключения риска поражения электрическим током для таких электроприборов, как, например, стиральная машина, холодильник, электроплита, бойлер для воды. Розетка для электрической плиты

Как следует из названия, данный тип розеток устанавливается для подключения электрической плиты

Это силовая розетка, способная выдержать подключенную мощность до 7 кВт и более. Внутренняя розетка. Устанавливается в специальную коробку, установленную в углублении в стене. Применяется при скрытой электропроводке. Наружная (накладная) розетка. Применяется в основном в помещениях с наружной электропроводкой.

Выбор схемы подключения

В случае, если речь идет не о замене старой розетки, а об установке новой, предстоит выбрать оптимальную схему подключения.

Существуют следующие схемы:

  • Параллельное подключение. При такой схеме к каждой розетке идет отдельный провод от распределительной коробки. Применяется для подключения электроприборов с высокой мощностью.
  • Последовательное подключение. Все розетки подключены друг за другом к одному проводу. Предпочтительно при подключении к данным розеткам маломощных приборов.
  • Смешанное подключение при использовании обеих схем одновременно (некоторые розетки подключены последовательно, некоторые — параллельно).

Схема последовательного соединения розеток

Отключение электричества

Перед началом любых электромонтажных работ, в том числе монтажа розетки, необходимо отключить подачу электроэнергии путем выкручивания пробок/отключения автоматов и убедиться при помощи индикаторной отвертки в отсутствии напряжении.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector