Сверхпроводники

Предыстория

С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.

В конце XIX – начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (слева)

Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры – около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.

Сверхпроводники комнатной температуры

В последние годы исследователи выдвигают температурные ограничения на то, насколько холодным должен быть сверхпроводящий материал, чтобы функционировать.

В настоящее время рекордсменом является соединение, состоящее из серы и водорода, которое может без потерь проводить электричество при относительно теплой температуре 203 Кельвина (-70 градусов Цельсия). Единственная загвоздка в том, что для его формирования требуется давление в 1,5 миллиона атмосфер.
По мере того как физики будут больше узнавать о сверхпроводящих материалах, они будут разрабатывать более точные модели этого явления, возможно, приближая нас к сверхпроводникам, которые могут удобно работать в  кармане.

История сверхпроводящих материалов была особенно отмечена открытием других соединений, в частности органических сверхпроводников, которые, несмотря на их низкую критическую температуру, продолжают привлекать большой интерес к своим экзотическим свойствам.

И последнее, но не менее важное: недавние наблюдения сверхпроводимости в материалах на основе железа (пниктиды) возродили надежду на достижение сверхпроводимости при комнатной температуре.
Однако, несмотря на интенсивные исследования во всем мире, некоторые особенности, связанные с этим явлением, остаются закрытыми. Одним из фундаментальных ключевых вопросов является механизм, с помощью которого происходит явление сверхпроводимости

Этот механизм наука изучает.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Диэлектрики

В отличие от проводников, диэлектрики не проводят электроток, то есть являются изоляторами. Принято относить к диэлектрикам материалы, у которых удельное электрическое сопротивление составляет 108 Ом·м и выше.

Диэлектрики характеризуются большим количеством параметров, которые имеют различную степень важности, в зависимости от области применения. До начала развития электроники диэлектрики использовались, в подавляющем большинстве, в качестве изоляционных материалов

В данной области основным параметром диэлектриков являлось их удельное сопротивление, пробивное напряжение (электрическая прочность).

Остальные параметры относятся к физико-химическим свойствам:

  • Плотность;
  • Прочность;
  • Температура плавления;
  • Гигроскопичность.

Последний параметр важен тем, что наличие влаги в составе материала резко снижает удельное сопротивление и в определенных условиях может перенести хороший диэлектрик в область проводников (сухая древесина – влажная древесина).

Диэлектрические перчатки

Диэлектрики, работающие в цепях с высокочастотным током, классифицируются по:

  • Диэлектрической проницаемости;
  • Тангенсу угла потерь.

Данные характеристики являются основополагающими при изготовлении конденсаторов.

Ряд уникальных свойств присутствует только у диэлектриков и позволяет конструировать на их основе радиоэлектронные компоненты специального назначения. Это такие свойства, как:

  • Пьезоэлектричество;
  • Сегнетомагнетизм;
  • Сегнетоэлектричество;
  • Пироэлектричество;
  • Электретность.

Пьезоэлектрический излучатель

Основное назначение диэлектриков, как изоляционных материалов – предохранение утечек тока и предотвращение несчастных случаев и аварий. Данные мероприятия зачастую дублируют, устанавливая заземляющие проводники, которые отводят нежелательный потенциал на корпусе аппаратуры на заземление.

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10-8 Ом·м. Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·108, Ом·м

Марка стали 20 100 300 500 700 900 1100
12Х18Н9 74,3 89,1 100,1 109,4 114
12Х18Н9Т 72,3 79,2 91,2 101,5 109,2
17Х18Н9 72 73,5 92,5 103 111,5 118,5
Х18Н11Б 84,6 97,6 107,8 115
Х18Н9В 71 77,6 91,6 102,6 111,1 117,1 122
4Х14НВ2М (ЭИ69) 81,5 87,5 100 110 117,5
1Х14Н14В2М (ЭИ257) 82,4 95,6 104,5 112 119,2
1х14Н18М3Т 89 100 107,5 115
36Х18Н25С2 (ЭЯ3С) 98,5 105,5 110 117,5
Х13Н25М2В2 103 112,1 118,1 121
Х7Н25 (ЭИ25) 109 115 121 127
Х2Н35 (ЭИ36) 87,5 92,5 103 110 116 120,5
Н28 84,2 89,1 99,6 107,7 114,2 118,4 122,5

Преимущества и недостатки термометров сопротивления

При сравнении с термопарой можно упомянуть следующие минусы ТС:

  • высокую стоимость;
  • обязательное использование внешнего источника стабилизированного электропитания;
  • ограниченный рабочий диапазон.

Плюсы:

  • линейный график измеряемых параметров;
  • точность;
  • корректная компенсация искажений от соединительных проводов.

Выбор подходящего датчика организуют на основе подготовленных критериев. Кроме базовых технических параметров, уточняют допустимые габариты, условия эксплуатации. Для продления срока службы необходимы регулярные проверки состояния термосопротивления и других компонентов измерительной схемы.

Теоретическое объяснение эффекта сверхпроводимости

Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.

Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.

Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.

Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь – колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов – куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.

Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать конденсат Бозе-Эйнштейна и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является бозоном. При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Поезд на магнитном подвеске в Шанхае, Китай

Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

Значение сверхпроводимости

Потенциальная выгода от широкого использования явления сверхпроводимости очевидна: радикальное снижение потерь электроэнергии при ее выработке и передаче, уменьшение в разы размеров генерирующего оборудования и двигателей, создание новых электронных приборов,  разработка сверхмощных электромагнитов для научных исследований и промышленности, разработка новых направлений в медицине, использование эффекта левитации на железной дороге.  Распространению сверхпроводимости, не в последнюю очередь, способствуют жесткие ограничения на выбросы парниковых газов, установленные Киотским протоколом. Например, Европа должна уменьшить выбросы газов на 8% к 2012 году по сравнению с 1990 годом. Финские ученые подсчитали, что эту задачу можно было бы выполнить при широком применении сверхпроводимости на электростанциях и в системах передачи и распределения энергии, что дало бы возможность снизить количество сжигаемого топлива, не уменьшив выработку электроэнергии.

Формула определения длины проводника

Сопротивление тока: формула

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

L = R / r*s,

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Презентация на тему: » Сверхпроводники́ -вещества, переходящие в сверхпроводящее состояние при температурах ниже критической (Тк). Сверхпроводимость свойство некоторых материалов.» — Транскрипт:

2

Сверхпроводники́ -вещества, переходящие в сверхпроводящее состояние при температурах ниже критической (Тк). Сверхпроводимость свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения

3

История открытия 1911 году — голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,15 К резко падает до нуля год – открытие Эффекта Мейснера год — Первое теоретическое объяснение поведения сверхпроводника в магнитном поле предложено в Англии немецкими физиками Ф. Лондоном и Г. Лондоном год — американские физики Дж. Бардин, Л. Купер и Дж. Шриффер раскрыли механизм явления (для него существенно парное поведение электронов) часто называют «куперовское спаривание» 1960 год — Дж. Кюнцлера с сотрудниками открыли сверхпроводники,которые получили название «жесткие сверхпроводники» год – статья, работающих в Цюрихе физиков, швейцарца А. Мюллера и немца Г. Беднорца, ознаменовала открытие нового класса сверхпроводящих веществ высокотемпературных сверхпроводников

4

Свойства сверхпроводников Нулевое сопротивление Фазовый переход в сверхпроводящее состояние Эффект Мейсснера Изотопический эффект Момент Лондона

5

Нулевое сопротивление. Принципиальная схема опыта Оннеса: 1 источник тока; 2 выключатель, замыкающийся, чтобы ток циркулировал в сверхпроводящем контуре внутри сосуда 3с жидким гелием; 4 сверхпроводящее кольцо, которое создает магнитное поле H(на рисунке обозначены его силовые линии); 5 магнитная стрелка, с помощью которой отслеживаются изменения магнитного поля

6

Фазовый переход в сверхпроводящее состояние При критической температуре T c их положение одинаково, шарик может «перескочить» из нормальной фазы в сверхпроводящую. Такой переход называется фазовым переходом.

7

Эффект Мейсснера. постоянное не слишком сильное магнитное поле выталкивается из сверхпроводящего образца. В толще сверхпроводника магнитное поле ослабляется до нуля, сверхпроводимость и магнетизм можно назвать как бы противоположными свойствами.

8

Изотопический эффект. Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента. *в 1950 году изотоп-эффект. При замене одного изотопа на другой вид кристаллической решетки не меняется, электронная жидкость вообще не затрагивается, меняется только масса атомов. Оказалось, что от массы атомов зависит T c многих сверхпроводников. Чем меньше масса изотопа, тем выше T c. Более того, вид этой зависимости позволил утверждать, что T c пропорциональна частоте колебаний атомов решетки

9

Момент Лондона. Чем больше температура отличается от критической, тем на меньшую глубину в образец проникает магнитное поле. По мере приближения к температуре перехода магнитное поле все глубже проникает в толщу образца. Пока наконец в самой точке перехода в нормальное состояние не захватит весь объем газа. В близи критической температуры сверхпроводники уже не являются идеальными диэлектриками.

10

Теория БКШ г г. Пары образуют когерентное состояние,в котором они все имеют один и тот же импульс.

11

сверхпроводники I рода II рода

12

Применение сверхпроводников. маломощная электроника (быстродействующие вычислительные устройства, детекторы магнитного поля и излучений, оборудование для связи в микроволновом диапазоне) силовые применения (кабели, токоограничители, магниты, моторы, генераторы, накопители энергии).

История открытия

Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.

Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.

После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.

Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом•м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом•м) данная величина меньше на 7 порядков, что делает ее практически нулевой.

Эффект Мейснера

Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно – эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.

Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом

Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Поезд на магнитном подвеске в Шанхае, Китай

Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

https://youtube.com/watch?v=L8YEdHYhuLs

Открытие сверхпроводимости

Итак, общая теория сверхпроводимости появилась. Основная ее идея такова. Частицы одного знака должны — по закону Кулона — отталкиваться друг от друга. Этот закон, конечно, соблюдается и в сверхпроводниках. Но кроме такого взаимодействия, оказывается, в металле может быть и другое — слабое притяжение, возникающее между электронами через промежуточную среду. Эта среда — сама решетка металла, или, говоря точнее, ее колебания. И вот, если появляются условия, когда это притяжение становится больше сил отталкивания, наступает сверхпроводимость.

Сейчас уже никто не сомневается, что теория, в основном, правильно объясняет природу сверхпроводимости. Но значит ли это, что решены все проблемы? Спросите у теоретиков: «Почему у олова критическая температура равна 3,7 градуса, а у ниобия 9,2?». Увы перед такими важными вопросами теория пока пасует…

Обычный путь в физике: явление открыли — объяснили — научились использовать. Чаще всего развитие теории и разработка способов применения идут параллельно. Разумеется, в такой непривычной, далекой от повседневного быта области, как сверхпроводимость, слово «применение» надо понимать несколько иначе, чем обычно – это не тракторы и не стиральные машины. Применять — значит использовать уникальные эффекты, заставить их «работать». Пусть сначала только в лаборатории, пусть без шумных успехов и сенсаций.

А что, если попробовать изготовить сверхпроводящий магнит? — такой вопрос возник еще в двадцатые годы прошлого века. Известно ведь, наиболее сильные магнитные поля создают с помощью электромагнитов. Поля напряженностью до 20 тысяч эрстед удается получать таким методом довольно успешно, на сравнительно недорогих установках. А если нужны более сильные поля — сто и более тысяч эрстед? Мощность магнитов возрастает до миллионов ватт. Питать их нужно через специальные подстанции, а водяное охлаждение магнита требует расхода тысяч литров воды в минуту.

Магнитное поле — электрический ток — сопротивление связаны в единую цепочку. Как заманчиво было бы вместо этих громоздких, сложных и дорогих устройств изготовить миниатюрную катушку из сверхпроводящей проволоки, поместить в жидкий гелий и, питая ее от простого аккумулятора, получать сверхсильные магнитные поля. Реализовать эту идею удалось значительно позже — только тогда, когда были открыты новые материалы с высокими критическими полями и токами: сначала ниобий, потом сплав ниобия с цирконием, титайом. И, наконец, ниобий — олово. Во многих лабораториях мира уже «трудятся» портативные сверхпроводящие магниты, дающие поля около 100 тысяч эрстед. И несмотря на дороговизну жидкого гелия, такие магниты значительно выгоднее обычных.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: