Формулы для вычисления
Электрической ёмкости в фарадах, посредством математических выражений
Ёмкость, которую может накапливать и хранить конденсатор, как потенциальную электрическую энергию – величина постоянная. Она пропорциональна заряду и обратно пропорциональна приложенному напряжению. Математическое выражение фарада выглядит так:
Где:
- C – ёмкость конденсатора,
- Q – заряд,
- U – приложенное напряжение.
Из приведённого выражения следует, что, изменяя прикладываемое напряжение, можно регулировать величину самого заряда.
Единица измерения электрической ёмкости – фарад – может выражаться (рассчитываться) и через иные единицы измерения, действующие в системе СИ:
Здесь: F – фарад, C – кулон, V – вольт, A – ампер, s – секунда, J – джоуль, N – ньютон, m – метр, W – ватт, kg – килограмм, Ω – ом, Hz – герц, H – генри.
Как рассчитать энергию электрического поля через напряженность, формула
В качестве примера можно рассмотреть плоский конденсатор. Его однородное электрическое поле в этом случае будет обладать напряженностью. Данная величина определяется по формуле:
\(E=\frac{U}{d}\)
Емкость конденсатора будет рассчитываться таким образом:
\(C=\frac{\varepsilon _{0}\varepsilon S}{d}\)
Исходя из приведенных равенств, энергия электрического поля будет равна:
\(W_{e}=\frac{CU^{2}}{2}=\frac{\varepsilon _{0}\varepsilon SE^{2}d^{2}}{2d}=\frac{\varepsilon _{0}\varepsilon E^{2}}{2}V\)
Где V = Sd является объемом пространства между пластинами конденсатора, который вмещает электрическое поле.
Конденсатор в цепи переменного тока
Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю. В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим.
По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора. Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.
Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда ,один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится. Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.
С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.
К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.
С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.
В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.
Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим заряды и разряды конденсатора сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит переменный ток.
§ 19. Напряжённость электростатического поля. Принцип суперпозиции
Для изучения свойств электростатического поля удобно использовать такую его характеристику, которая не зависит от числового значения пробного заряда и позволяет определить силу, действующую на заряд со стороны поля в любой его точке. Для гравитационного поля такой характеристикой, не зависящей от массы тела, является ускорение свободного падения . Какая физическая величина является характеристикой электростатического поля?
Напряжённость электростатического поля. Пусть электростатическое поле создано в вакууме точечным зарядом Q > 0. Если в некоторую точку поля поместить пробный положительный заряд q, на него будет действовать кулоновская сила отталкивания, модуль которой .
Сила не может служить характеристикой поля, так как её модуль пропорционален значению пробного заряда q. Однако отношение модуля силы, которой электростатическое поле точечного заряда Q действует на пробный заряд q, не зависит от значения пробного заряда:
(19.1)
и, следовательно, может служить характеристикой поля.
Эту характеристику называют напряжённостью электростатического поля и обозначают . Напряжённость характеризует силовое действие поля на вносимые в него заряды.
Напряжённость электростатического поля — физическая векторная величина, равная отношению силы, которой поле действует на пробный заряд, к значению этого заряда:
(19.2)
С учётом выражений (19.1) и (19.2) можно определить модуль напряжённости электростатического поля, созданного точечным зарядом Q, в точке, находящейся на расстоянии r от него:
Таким образом, модуль напряжённости поля, создаваемого в вакууме точечным зарядом, прямо пропорционален модулю этого заряда и обратно пропорционален квадрату расстояния между зарядом и точкой, в которой определяют значение напряжённости.
Если заряд Q находится в однородной среде с диэлектрической проницаемостью ε, то модуль напряжённости поля .
Из выражения следует, что единицей напряжённости электростатического поля в СИ является ньютон на кулон . В СИ широко используют другое название этой единицы — вольт на метр .
Зная напряжённость электростатического поля, можно определить силу, действующую на любой точечный заряд в любой точке этого поля:
(19.3)
Рис. 104
Напряжённость поля, как и сила, величина векторная. Направление напряжённости поля совпадает с направлением силы, действующей на положительный пробный электрический заряд. Напряжённость в любой точке электростатического поля точечного заряда направлена вдоль прямой, соединяющей эту точку и точечный заряд, создающий поле. Напряжённость поля, созданного точечным положительным зарядом Q > 0, направлена от заряда, а напряжённость поля, созданного точечным отрицательным зарядом Q < 0, — к заряду (рис. 104).
От теории к практике
Рис. 105
1. Как изменится модуль напряжённости в некоторой точке поля, созданного точечным зарядом Q, если: а) расстояние r от заряда до этой точки увеличить вдвое; б) заряд Q увеличить вдвое, а расстояние r от заряда до этой точки уменьшить вдвое?
2. Как направлена в точке А напряжённость поля, созданного неподвижным точечным зарядом (рис. 105)? Чему равен модуль напряжённости поля в этой точке?
Рис. 105.1
Модуль напряжённости поля уединённой проводящей сферы радиусом R, заряд которой Q (рис. 105.1), в точках на её поверхности r = R и вне сферы на расстоянии r > R от её центра определяют по формуле . В точках, находящихся внутри проводящей сферы r < R, напряжённость равна нулю , если внутри этой сферы нет электрических зарядов.
Напряжённость электростатического поля, создаваемого равномерно заряженной бесконечной плоскостью, одинакова во всех точках полупространства с каждой стороны от плоскости (при этом ), а её модуль
где S — площадь некоторого участка плоскости, — модуль заряда этого участка (рис. 105.2).
Рис. 105.2
Интересно знать
Кроме гравитационного поля у Земли есть электрическое и магнитное поля. Модуль напряжённости электрического поля у поверхности Земли в среднем составляет . Электрическое поле Земли меняется во времени. Избыточный отрицательный электрический заряд земного шара колеблется около –6 · 105 Кл.
Энергия заряженного конденсатора
Существует еще одна эквивалентная запись заряженного конденсатора при использовании соотношения Q=CU:
We=Q22C=CU22=QU2.
Электрическая энергия We рассматривается как потенциальная. Формулы для We аналогичны формулам потенциальной энергии Ep деформированной пружины, а именно:
Ep=kx22=F22k=Fx2, где k является жесткостью пружины, х – деформацией, F=kx – внешней силой.
Современные представления электрической энергии говорят о том, что она сосредоточена между пластинами конденсатора. В связи с этим и получила название энергии электрического поля. Это объяснимо с помощью иллюстрирования заряженного плоского конденсатора.
Выбор правильного конденсатора
Я очень не хотел использовать конденсатор типоразмера 1210. К счастью, я имел возможность увеличить сопротивление резисторов в пять раз, уменьшив при этом ёмкость до 1мкФ. Графики на рисунке 2 показывают поведение различных X7R конденсаторов 1мкФ на 16В в сравнении с их собратьями X7R 4,7мкФ на 16В.
Рисунок 2. Поведение различных конденсаторов на 1мкФ и 4,7мкФ.
Конденсатор 0603 1мкФ ведёт себя так же, как 0805 4,7мкФ. Вместе взятые 0805 и 1206 на 1мкФ чувствуют себя лучше, чем 4,7мкФ типоразмера 1210. Используя конденсатор 1мкФ в корпусе 0805 я мог сохранить требования к размерам компонентов, получив при этом в рабочем режиме 85% от исходной ёмкости, а не 30%, как было ранее.
Но это ещё не всё. Я был изрядно озадачен, ибо считал что все конденсаторы X7R должны
иметь сходные коэффициенты изменения ёмкости от напряжения, поскольку все выполены на одном и том же диэлектрике — а именно X7R. Я связался с коллегой — специалистом по керамическим конденсаторам1. Он пояснил, что есть много материалов, которые квалифицируются как «X7R». На самом деле, любой материал который позволяет компоненту функционировать в температурном диапазоне от -55ºC до +125ºC с изменением характеристик не более чем на ±15% можно назвать «X7R». Так же он сказал, что нет каких-либо спецификаций на коэффициент изменения ёмкости от напряжения ни для X7R, ни для каких-либо других типов.
Это очень важный момент, и я его повторю. Производитель может называть конденсатор X7R (или X5R, или еще как-нибудь) до тех пор, пока он соответствует допускам по температурному коэффициенту ёмкости. Вне зависимости от того, насколько плох его коэффициент по напряжению.
Для инженера-разработчика этот факт только освежает старую шутку — «любой опытный инженер знает: читай даташит!»
Производители выпускают всё более миниатюрные компоненты, и вынуждены искать компромиссные материалы. Для того чтобы обеспечить необходимые ёмкостно-габаритные показатели, им приходится ухудшать коэффициенты по напряжению. Конечно, более авторитетные производители делают все возможное, чтобы свести к минимуму неблагоприятные последствия этого компромисса.
А как насчёт типа Y5V, который я сразу отбросил? Для контрольного в голову, давайте рассмотрим обычный конденсатор Y5V. Я не буду выделять какого-то конкретного производителя этих конденсаторов — все примерно одинаковы. Выберем 4,7мкФ на 6,3В в корпусе 0603, и посмотрим его параметры при температуре +85ºC и напряжении 5В. Типовая ёмкость на 92,3% ниже номинала, или 0,33мкФ. Это так. Приложив 5В к этому конденсатору мы получаем падение ёмкости в 14 раз по сравнению с номиналом.
При температуре +85ºC и напряжении 0В ёмкость уменьшается на 68,14%, с 4,7мкФ до 1,5мкФ. Можно предположить, что приложив 5В мы получим дальнейшее уменьшение ёмкости — от 0,33мкФ до 0,11мкФ. К счастью, эти эффекты не объединяются. Уменьшение ёмкости под напряжением 5В при комнатной температуре куда хуже, чем при +85ºC.
Для ясности, в данном случае при напряжении 0В ёмкость падает от 4,7мкФ до 1,5мкФ при +85ºC, в то время как при напряжении 5В ёмкость конденсатора увеличивается от 0,33мкФ при комнатной температуре, до 0,39мкФ при +85ºC. Это должно убедить вас действительно тщательно проверять все спецификации тех компонентов, которые вы используете.
Чему равна энергия заряженного конденсатора
Согласно закону сохранения энергии, энергия заряженного конденсатора равна работе, которую совершит электрическое поле при сближении пластин вплотную.
По какой формуле можно найти
Основная характеристика поля, напряженность, создаваемая одной из пластин, равна половине напряженности поля во всем конденсаторе. Заряд q, распределенный по поверхности одной пластины, находится в однородном электрическом поле другой. Потенциальную энергию заряда можно найти по формуле:
\(W_п\;=\;q\frac E2d\)
где Е — напряженность поля во всем конденсаторе, а d — расстояние между пластинами.
В этой формуле могут использоваться другие известные величины, например, разность потенциалов между пластинами, обозначаемая буквой U. Чтобы вычислить ее, нужно умножить напряженность поля Е на расстояние между пластинами d. Тогда формула для вычисления энергии будет иметь вид:
\(W_п\;=\;\frac{qU}2\)
Электроемкость изолированного проводника С равна отношению изменения заряда q к изменению потенциала проводника \(\varphi\). Ее можно найти по формуле:
\(С\;=\;\frac qU\)
Таким образом, для решения задач можно использовать три выражения:
\(W_п\;=\;\frac{qU}2\;=\;\frac{q^2}{2C}\;=\;\frac{CU^2}2\)
Эти формулы справедливы для любого конденсатора, не только для плоского. Если малыми порциями \(-\triangle q\)переносить отрицательный заряд с одной пластины на другую, поле внутри конденсатора будет совершать работу. Если порции заряда малы, для простоты расчетов можно предположить, что напряжение между пластинами не меняется. Тогда работа:
\(\triangle А = -\triangle qU\;=\;-\frac1Cq\triangle q\)
\(\triangle W_п\;=\;\frac1Cq\triangle q\)
Построив график зависимости \(\;\frac qC\) от \(q\), мы видим, что приращение энергии численно равно площади прямоугольника \(abcd\) со сторонами \(\;\frac qC\triangle q\). Полное изменение энергии \(W_п \)будет равняться площади треугольника OBD.
Следовательно, \(W_{п\;}=\;\frac{OD\;\times\;DB}2\;=\;\frac{q^2}{2C}\).
Калькулятор расчета запасаемой энергии в конденсаторе
Конструктивно конденсатор представляет собой емкостной элемент, состоящий из двух параллельно расположенных пластин, пространство между которыми заполнено диэлектриком.
Устройство конденсатора
Принцип работы конденсатора заключается в способности накапливать определенную величину заряда на пластинах и отдавать их обратно в сеть при прохождении через него переменного тока. Для цепи постоянного тока конденсатор представляет собой разрыв, но пластины все равно способны накапливать заряд. Основным параметром конденсатора является емкость, выражающаяся в Фарадах и способность накапливать заряд, выражаемая величиной энергии в Джоулях.
Если емкость конденсатора указывается на корпусе элемента и является его паспортным значением, то количество запасаемой энергии можно определить путем вычислений. Наиболее простым способом вычисления является использования онлайн калькулятора.
Для этого выполните такую последовательность действий:
- Внесите в первую графу калькулятора значение напряжения на конденсаторе в Вольтах;
- Укажите во втором поле величину емкости элемента в микрофарадах;
- Внесите значения сопротивления конденсатора и нажмите кнопку «Рассчитать».
В результате онлайн калькулятор расчета запасаемой энергии в конденсаторе выдаст значение заряда и времени, расходуемого на полный заряд емкостного элемента, подключенного к цепи.
Расчет величины заряда, накапливаемого в конденсаторе, и времени, необходимого для накопления этого заряда производится по таким формулам:
- W – это количество запасаемой энергии в конденсаторе;
- U – величина напряжения, приложенного к конденсатору;
- C – емкость конденсатора.
Для определения времени, затрачиваемого на накопление этого количества запасаемой энергии, в калькуляторе используется формула: Tзар = R*C
- Tзар — период времени, необходимый для накопления заряда, зависящий от параметров элемента;
- R – величина омического сопротивления конденсатора;
- C – емкость конденсатора.
Источник
Энергия поля плоского конденсатора
Для упрощения можно рассмотреть пример с перемещением разноименно заряженных пластин. Сформированная сила притяжения (F) будет измеряться величиной заряда (q) и напряженностью поля (E) между соответствующими обкладками:
F = q * E.
Так как E = q/(2*e*S), несложно получить выражение для значения силового взаимодействия:
F = q2/(2*e0*S),
где:
- e0 – это электрическая постоянная = 8,854 * 10-12 Ф*м-1;
- S – площадь пластин.
Работа (A) равна произведению силы на пройденное расстояние (d), поэтому W (энергия плоского конденсатора) = A = F * d = d *q2/(2*e0*S). Емкость (С) определяется, как C = d /(e0*S). Следующими преобразованиями можно получить итоговое выражение:
- W = q2/(2*C);
- q = C * U;
- энергия конденсатора формула:
W = ½ *C * U2.
Концепция Вольты
Как свидетельствуют записки учёного, уже в 1778 году он получил представление о разнице потенциалов, которые называл tension – напряжение. С 1775 года Вольта придерживается концепции электрической ёмкости – capacita, выдвинутой его учителем Беккарией. Вольта уже знает, что электрофорус способен накопить заряд, называет прибор конденсатором, и решает подтвердить теорию практикой. Иначе – найти взаимосвязь напряжения, ёмкости и объёмом (quantita) заряда.
Вольта начал с лейденской банки. Он заряжал её от статического генератора и пробовал определить энергию конденсатора тремя путями:
- Наблюдал получаемую искру электрической дуги от различной конструкции лейденских банок, заряженных одинаковым напряжением.
- Измерял количество произведённой электростатическими генераторами трения работу, пока показания электрометра не росли до определённого уровня.
- Разряжал лейденские банки на открытом воздухе и пытался сравнить производимый ими электрический шок по истечении времени.
Все перечисленное привело исследователя к странным выводам, что высокие лейденские банки более вместительные (при одинаковых площадях обкладок и прочих равных условиях). Вероятно, это связано со скоростью разряда их дуги на воздухе вследствие различий в кривизне поверхностей. Силу разряда Вольта увязывал с электрическим током: чем быстрее течёт флюид, тем более жаркий (по ощущениям) эффект. В результате, Вольта счёл, что разница потенциалов единственная определяет процесс возникновения удара. Он решил, что напряжение допустимо измерить двумя путями:
- Через количество оборотов генератора статического заряда.
- Сравнивая силу электрического удара при разряде лейденской банки.
Вольта нашёл, что заряжая пустую лейденскую банку от полной, шок получается вдвое слабее. Постепенно (1782 год) Вольта пришёл к выводу, что вышеуказанные величины соотносятся между собой: tension x capacity ~ load, в современном мире выглядит как U C = q или C = q / U.
Вольта заключил, что ёмкость больше там, где при меньшем напряжении вмещается больше заряда. Последовало заключение, что количество накопленного флюида прямо пропорционально площади обкладок плоского конденсатора. Что согласуется с современными формулами. Вольта обобщил знания на случай произвольного проводника (экспериментировал со стержнями лейденских банок). Изменяя расстояние между обкладками, установил:
С ~ S / d.
Что фактически стало выражением ёмкости плоского конденсатора. Вольта объяснил зависимость наличием некоего сопротивления (resistance) между обкладками, подразумевая воздух. Изменяя дистанцию, удаётся варьировать этот параметр в обе стороны. Это слегка не согласуется с современными концепциями, но Вольта помог Георгу Ому 40 лет спустя вывести зависимость между током и напряжением.
Фактически измерения проделывались на основе работы поля, проявлявшейся лишь вследствие заряда конденсатора. Очевидно, что указанная величина равна энергии – одной из первых физических характеристики, использованных для вывода аналитических выражений.
ЭКСПЕРИМЕНТ 1
Определение ёмкости конденсатора методом разрядки
1.Соберите на рабочей части экрана замкнутую электрическую цепь, показанную ниже на рис.2. Для этого сначала щёлкните мышью на кнопке э.д.с.,расположенной в правой части окна эксперимента. Переместите маркер мыши на рабочую часть экрана, где расположены точки, и щёлкните маркером мыши в виде вытянутого указательного пальца в том месте, где должен быть расположен источник тока. Подведите маркер мыши к движку появившегося регулятора э.д.с., нажмите на левую кнопку мыши, удерживая её в нажатом состоянии, меняйте величину э.д.с. и установите 10 В. Аналогичным образом включите в цепь 4 других источника тока. Суммарная величина э.д.с. батареи должна соответствовать значению, указанному в таблице 1 для вашего варианта.
Таким же образом разместите далее на рабочей части экрана 7 ламп Л1-Л7 ( кнопка ), Ключ К (кнопка ), вольтметр (кнопка ), амперметр (кнопка ), конденсатор (кнопка ). Все элементы электрической цепи соедините по схеме рис.1 с помощью монтажных проводов (кнопка ).
2. Щёлкните мышью на кнопке «Старт». Должна засветиться лампа Л7, а надпись на кнопке измениться на «Стоп». Курсором мыши замкните ключ К.
3. После установления в цепи стационарного тока ( должны погаснуть лампы Л5 и Л6 и светиться лампы Л1-Л4) запишите показания электроизмерительных приборов в таблицу 2.
4. Нажмите на кнопку «Стоп» и курсором мыши разомкните ключ К.
5. Двумя короткими щелчками мыши на кнопке «Старт» запустите и остановите процесс разрядки конденсатора. Показания амперметра будут соответствовать начальному току разрядки конденсатора I0. Запишите это значение в таблицу 3.
6. Вновь замкните ключ, зарядите конденсатор и повторите п.п. 5, 6 ещё 4 раза.
7. Для каждого опыта рассчитайте It= I0/2,7- силу тока, которая должна быть в цепи разрядки конденсатора через время релаксации t и запишите эти значения в таблицу 3.
8. При разомкнутом ключе нажатием кнопки «Старт» запустите процесс разрядки конденсатора и одновременно включите секундомер.
9. Внимательно наблюдайте за изменением показаний амперметра в процессе разрядки конденсатора. Остановите секундомер и синхронно нажмите кнопку «Стоп» при показании амперметра, равном или близким к It. Запишите это значение времени t1 в таблицу 3.
10. Проделайте опыты п.п.8, 9 ещё 4 раза.
Таблица 1. Суммарное значение э.д.с. источников тока
Вариант | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Э.д.с.,В | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 |
Таблица 2. Определение сопротивления лампы.
№п/п | I, А | U, В | R, Ом |
Номер опыта | 1 | 2 | 3 | 4 | 5 | Среднее
значение |
I0, А | ||||||
It, А | ||||||
t, с | ||||||
C, Ф |
Таблица 3. Результаты измерений и расчётов.
ОБРАБОТКА РЕЗУЛЬТАТОВ:
1. По закону Ома для участка цепи Л1-Л4: и результатам измерений, приведённым в таблице 2, определите сопротивление одной лампы.
2. По формуле (при разрядке конденсатора квазистационарный ток протекает по 6 последовательно соединённым лампам) определите ёмкость конденсатора и запишите эти значения в таблицу 3.
3. Рассчитайте погрешности измерений и сформулируйте выводы по результатам проделанной работы.