Закон кирхгофа: первый и второй простыми словами, формулы

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.


Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа в химии

Когда в ходе химической реакции система меняет свою теплоемкость, одновременно изменяется и температурный коэффициент возникающего теплового эффекта. Применяя уравнение, которое следует из этого закона, тепловые эффекты могут быть рассчитаны в любом температурном диапазоне. Дифференциальная форма этого уравнения:

∆Cp = d∆Q / dT,

где это находится:

  • ∆Cp – температурный коэффициент;
  • d∆Q – изменение воздействия тепла;
  • dT – изменение температуры.

Важно! Коэффициент определяет, как изменится тепловой эффект при изменении температуры на 1 К (2730 ° С). Теорема Кирхгофа для термодинамики

Теорема Кирхгофа для термодинамики

Третье уравнение Максвелла, а также принцип сохранения заряда позволили Густаву Кирхгофу создать два правила, применимых к электротехнике. Имея данные о значениях сопротивлений резисторов и ЭДС источников питания, можно рассчитать I fluent или U, приложенный для любого элемента схемы.

Закон напряжения Кирхгофа

Сумма всех напряжений в контуре равна нулю. v1 + v2 + v3 + v4 = 0

Этот закон еще называют Второй закон Кирхгофа, Петля Кирхгофа (или же сетка) правило, и Второе правило Кирхгофа.

Этот закон гласит, что

Аналогично закону тока Кирхгофа, закон напряжения можно сформулировать как:

∑k=1пVk={ displaystyle sum _ {k = 1} ^ {n} V_ {k} = 0}

Здесь, п — общее количество измеренных напряжений.

Вывод закона напряжения Кирхгофа.
Аналогичный вывод можно найти в Лекции Фейнмана по физике, том II, глава 22: Цепи переменного тока.

Рассмотрим произвольную схему. Приближайте схему с сосредоточенными элементами так, чтобы (изменяющиеся во времени) магнитные поля содержались в каждом компоненте, а поле во внешней части схемы было незначительным. Исходя из этого предположения, Уравнение Максвелла-Фарадея показывает, что

∇×E=−∂B∂т={ displaystyle nabla times mathbf {E} = — { frac { partial mathbf {B}} { partial t}} = mathbf {0}}

во внешней области. Если каждый из компонентов имеет конечный объем, то внешняя область односвязный, поэтому электрическое поле равно консервативный в этом регионе. Следовательно, для любого цикла в схеме мы находим, что

∑Vя=−∑∫пяE⋅dл=∮E⋅dл={ displaystyle sum V_ {i} = — sum int _ {{ mathcal {P}} _ {i}} mathbf {E} cdot mathrm {d} mathbf {l} = oint mathbf {E} cdot mathrm {d} mathbf {l} = 0}

куда пя{ textstyle { mathcal {P}} _ {я}} пути вокруг внешний вид каждого из компонентов, от одного терминала к другому.

Обобщение

В пределе низких частот падение напряжения вокруг любого контура равно нулю. Это включает в себя воображаемые петли, произвольно расположенные в пространстве — не ограниченные петлями, очерченными элементами схемы и проводниками. В пределе низких частот это следствие Закон индукции Фарадея (который является одним из Уравнения Максвелла).

Это имеет практическое применение в ситуациях, связанных с «статичное электричество».

Понятие электрического напряжения в физике

Готовые работы на аналогичную тему

  • Курсовая работа Электрическое напряжение цепи 420 руб.
  • Реферат Электрическое напряжение цепи 240 руб.
  • Контрольная работа Электрическое напряжение цепи 200 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Электрическим током в физике считается направленное перемещение заряженных частиц, создаваемое электрополем, совершающим при этом определенную работу.

Определение 1

Работа создающего ток электрополя называется работой тока ($A$). Такая работа может на разных участках цепи отличаться, однако при этом она будет пропорциональной проходящему через него заряду.

Физической величиной работы тока на конкретном участке при перемещении по нему заряда 1 Кл считается электрическое напряжение ($U$).

Для определения напряжения на отдельно взятом участке существует следующая формула:

$U =\frac{A}{q}$, где:

  • $A$ — работа тока,
  • $q$ — прошедший по участку заряд.

Вектор магнитной индукции. Сила Ампера и сила Лоренца

При прохождении тока по проводнику вокруг него образуется магнитное поле. Векторную характеристику магнитного поля называют вектором магнитной индукции . Это поле оказывает на рамку с током, помещенную в поле, ориентирующее действие. Такое действием магнитного поля на рамку с током или магнитную стрелку можно использовать для определения направления вектора магнитной индукции. За принимается направление, который показывает северный полюс N магнитной стрелки. Для определения направления вектора магнитной индукции поля, созданного прямолинейным проводником с током, пользуются правилом буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.

направление вектора магнитного поля прямого проводника с током.

Если между полюсами подковообразного магнита поместить проводник с током, то он будет втягиваться или выталкиваться из поля магнита. Закон, определяющий силу, действующую на отдельный небольшой участок проводника, был установлен в 1820 г. А. Ампером.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B.I.ℓ. sin α — закон Ампера.

  • Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.
  • Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Макроскопическим проявлением силы Лоренца является сила Ампера. Запишем силу, действующую на одну частицу. Если заряженная частица влетает в магнитное поле со скоростью , на нее со стороны магнитного поля действует сила, которую называют силой Лоренца: , a

– угол между векторами и .

  • В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса r. Сила Лоренца в этом случае является центростремительной силой:
  • Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол a , то траекторией движения частицы является винтовая линия с радиусом r.

Если расположить левую руку так, чтобы составляющая магнитной индукции , перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда, то отогнутый на 900 большой палец укажет направление действующей на заряд силы Лоренца Fл

.

Второй закон

Для расчетов сложных электрических цепей с несколькими источниками энергии используют второй закон Кирхгофа, который может быть сформулирован так: во всяком замкнутом электрическом контуре алгебраическая сумма всех э. д. с. равна алгебраической сумме падений напряжения в сопротивлениях, включенных последовательно в эту цепь, т. е.

E1 + E2 + E3 + . . . = I1r1 + I2r2 + I3r3 + . . .

Будет интересно Фантомное питание для микрофона: схема подключения

При этом положительными следует считать э. д. с. и токи, направление которых совпадает с направлением обхода контура. Если в электрическую цепь включены два источника энергии, э. д. с. которых совпадает по направлению (рис. 20, а), то э. д. с. всей цепи равна сумме э. д. с. этих источников, т. е. E = E1 + E2. Если же в цепи э. д. с. источников имеют противоположные направления, то результирующая э. д. с. равна разности э. д. с. этих источников, т. е.

E = E1 – E2.


Второй закон Кирхгофа.

При последовательном включении в электрическую цепь нескольких источников энергии с различным направлением э. д. с. общая э. д. с. равна алгебраической сумме э. д. с. всех источников. При суммировании э. д. с. одного направления берут со знаком плюс, а э. д. с. противоположного направления — со знаком минус. При составлении уравнений выбирают направление обхода цепи и произвольно задаются направлениями токов.

Замкнутая цепь обозначена буквами а, б, в и г. Ввиду наличия ответвлений в точках а, б, в, г токи I1, I2, I3 и I4, отличаясь по силе, могут иметь различные направления. Для такой цепи в соответствии со вторым законом Кирхгофа можно написать:

E1 – E2 – E3 = I1(r01 + r1) – I2(r02 + r2) – I3(r03 + r3) + I4r4,

где r01, r02, r03 — внутренние сопротивления источников энергии, r1, r2, r3, r4 — сопротивления приемников энергии. В частном случае при отсутствии ответвлений и последовательном соединении проводников общее сопротивление равно сумме всех сопротивлений. Если внешняя цепь источника энергии с внутренним сопротивлением r состоит, например, из трех последовательно соединенных проводников с сопротивлениями, соответственно равными r1, r2, r3, то на основании второго закона Кирхгофа можно написать следующее равенство:

E = I r + I r1 + I r2 + I r3.

При нескольких источниках тока в левой части этого равенства была бы алгебраическая сумма э. д. с. этих источников.

Закон Ома для полной цепи

Подробности
Просмотров: 453

«Физика — 10 класс»

Сформулируйте закон Ома для участка цепи.
Из каких элементов состоит электрическая цепь?
Для чего служит источник тока?

Рассмотрим простейшую полную (т. е. замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора сопротивлением R (рис. 15.10). Источник тока имеет ЭДС Ε и сопротивление r.

В генераторе r — это сопротивление обмоток, а в гальваническом элементе сопротивление раствора электролита и электродов.

Сопротивление источника называют внутренним сопротивлением в отличие от внешнего сопротивления R цепи.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи R + r. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля—Ленца (15.14).

Пусть за время Δt через поперечное сечение проводника проходит электрический заряд Δq. Тогда работу сторонних сил при перемещении заряда Δq можно записать так: Аст = ΕΔq. Согласно определению силы тока (15.1) Δq = IΔt. Поэтому

Аст = ΕIΔt.         (15.17)

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых г и Я, выделяется некоторое количество теплоты. По закону Джоуля—Ленца оно равно:

Q = I2RΔt + I2rΔt.         (15.18)

По закону сохранения энергии Аст = Q, откуда получаем

Ε = IR + 1r.         (15.19)

Произведение силы тока и сопротивления участка цепи называют падением напряжения на этом участке.

Таким образом, ЭДС равна сумме падений напряжения на внутреннем и внешнем участках замкнутой цепи.

Закон Ома для замкнутой цепи:

Сила тока в замкнутой цепи равна отношению ЭДС источника тока к полному сопротивлению цепи.

Согласно этому закону сила тока в цепи зависит от трёх величин: ЭДС Ε сопротивлений R внешнего и г внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R >> r). При этом напряжение на зажимах источника примерно равно ЭДС: U = IR = Ε — Ir ≈ Ε

При коротком замыкании, когда R ≈ 0, сила тока в цепи и определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если r мало (например, у аккумулятора r ≈ 0,1 — 0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.

Если цепь содержит несколько последовательно соединённых элементов с ЭДС Ε1, Ε2, Ε3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.

Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура.
На рисунке (15.11) положительным (произвольно) считают направление обхода против часовой стрелки.

Если при обходе цепи данный источник стремится вызвать ток в направлении обхода, то его ЭДС считается положительной: Ε > 0. Сторонние силы внутри источника совершают при этом положительную работу.

Если же при обходе цепи данный источник вызывает ток против направления обхода цепи, то его ЭДС будет отрицательной: Ε < 0. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображённой на рисунке 15.11, при обходе контура против часовой стрелки получаем следующее уравнение:

Εп = Ε1 + Ε2 + Ε3 = lΕ1| — |Ε2| + |Ε3|

Если Εп > 0, то согласно формуле (15.20) сила тока I > 0, т. е. направление тока совпадает с выбранным направлением обхода контура. При Εп < 0, наоборот, направление тока противоположно выбранному направлению обхода контура. Полное сопротивление цепи Rп равно сумме всех сопротивлений (см. рис. 15.11):

Rп = R + r1 + r2 + r3.

Для любого замкнутого участка цепи, содержащего несколько источников токов, справедливо следующее правило: алгебраическая сумма падений напряжения равна алгебраической сумме ЭДС на этом участке (второе правило Кирхгофа):

I1R1+ I2R2 + … + InRn = Ε1 + Ε2 + … + Εm

Следующая страница «Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»»

Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Электрический ток. Сила тока —
Закон Ома для участка цепи. Сопротивление —
Электрические цепи. Последовательное и параллельное соединения проводников
Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» —
Работа и мощность постоянного тока —
Электродвижущая сила —
Закон Ома для полной цепи —
Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

Особенности составления уравнений для расчёта токов и напряжений

В первую очередь выбирается участок, который нужно исследовать. Затем на каждой ветви произвольно устанавливается стрелка, показывающая направление текущего движения. Это нужно для того, чтобы потом не ошибиться. В расчете будет исправлена ​​неточность направления. Каждая стрелка обозначена буквой I с индексом. Рассмотреть сечение будет удобнее, если стрелки будут в непосредственной близости от места соединения цепей. Также указаны источники питания и резисторы, а к общему резистору добавлено сопротивление.

Внутри разреза они также произвольно показывают направление обхода, ориентируясь на возможные потенциалы. Необходимо сравнить направление текущего движения. Это сравнение покажет, какой знак должен иметь номер. Если оба направления совпадают, поставьте знак «+» и «-», если направления противоположны.

Количество поставленных задач должно соответствовать количеству выбранных неизвестных. Предположим, есть три цепи, и их токи необходимо вычислить, а это значит, что также необходимо составить три формулы. Оказывается, новое уравнение должно содержать хотя бы один новый элемент, которого не было в предыдущих задачах.

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу – второй закон этого автора, используемый для анализа электрической цепи. Второй закон Кирхгофа гласит, что для последовательной замкнутой цепи алгебраическая сумма всех напряжений в круге любой замкнутой цепи равна нулю. Претензия связана с тем, что петля петли представляет собой замкнутый токопроводящий путь, где потери энергии исключены. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равна нулю:

V = 0

Примечание. Термин «алгебраическая сумма» означает учет полярностей и знаков источников ЭДС, а также падения напряжения в цепи. Эта концепция закона Кирхгофа, известного как «сохранение энергии», как движение по контуру или замкнутому контуру, подтверждает логику возврата к началу цепи и к исходному потенциалу без потери напряжения во всей цепи.

Итак, вывод следует: при применении второго закона Кирхгофа к определенному элементу электрической цепи важно обращать особое внимание на алгебраические признаки падений напряжения на элементах (источниках ЭДС), иначе расчеты обернутся ошибкой

Одиночный контурный элемент — резистор

В качестве простого примера с резистором предположим, что ток течет в том же направлении, что и поток положительного заряда. В этом случае ток протекает через резистор от точки A к точке B. Действительно, от положительной клеммы к отрицательной. Следовательно, поскольку движение положительного заряда отмечается в направлении, аналогичном направлению протекания тока, на резистивном элементе будет зафиксировано падение потенциала, что приведет к падению отрицательного потенциала на резисторе (- I * R).

Если ток, протекающий из точки B в точку A, течет в направлении, противоположном потоку положительного заряда, вы заметите увеличение потенциала через резистивный элемент, поскольку происходит переход от отрицательного потенциала к положительному потенциалу, что дает падение напряжения. (+ I * R). Следовательно, чтобы правильно применить закон Кирхгофа к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление протекания тока в замкнутом контуре можно определять по или против часовой стрелки, и любой вариант допустим на выбор. Если выбранное направление отличается от фактического направления тока, соблюдение закона Кирхгофа будет правильным и действительным, но приведет к результату, когда алгебраический расчет имеет знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть еще один пример с петлевой петлей на соответствие второму закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа гласит, что алгебраическая сумма разностей потенциалов каждого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутой цепи с двумя резисторами и источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одной цепи. В результате через каждый из резисторов протекает одинаковый ток.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2 дают напряжение согласно второму закону Кирхгофа:

V = I * Rs

где: Rs = R1 + R2.

Очевидно, что применение второго закона Кирхгофа к одиночному замкнутому контуру дает формулу для эквивалента или импеданса для последовательной цепи. Допускается расширить эту формулу для нахождения значений капель потенциала по контурной окружности:

I = V / Rs

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора с номинальным сопротивлением 10, 20, 30 Ом соответственно. Все три резистивных элемента соединены последовательно с батареей на 12 вольт.

Необходимо рассчитать:

  • полное сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитываем полное сопротивление:

Ro = R1 + R2 + R3 = 10 Ом + 20 Ом + 30 Ом = 60 Ом

Ток цепи:

I = V / Ro = 12/60 = 0,2 А (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2 А (200 мА)

Потенциальное падение на каждом из резисторов:

VR1 = I * R1 = 0,2 * 10 = 2 В

VR2 = I * R2 = 0,2 * 20 = 4 В

VR3 = I * R3 = 0,2 * 30 = 6 В

Таким образом, действует Второй закон Кирхгофа, поскольку отдельные падения напряжения, обнаруживаемые по окружности замкнутого контура, в конечном итоге являются суммой напряжений.

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I – Сила тока в цепи.

– Электродвижущая сила (ЭДС) – величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника. r – Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR. Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания. С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы. По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = – I*r. Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U. Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

Значение в математике

Имеется контур, состоящий из четырех цепей. В первой содержится источник питания ε1 с внутренним сопротивлением источника r1, во второй какая-то нагрузка R1. Третья имеет источник питания и нагрузку. Четвертая состоит из нагрузки. Точки B и F являются узлами. Стрелки возле них показывают предположительное направление тока. Стрелка внутри участка показывает направление обхода. Необходимо найти ток в цепях: AK, AB, BF, CD. По идее нужно составить четыре уравнения, но поскольку ε1 и R1 единственные на участке KAB, то их объединим в одну цепь. Выходит, нужно составить три уравнения.

Первое берется из первого правила: I1 + I2 + I3 = 0. Поскольку I1, I2 втекают в узел B, они имеют положительный знак, а I3 вытекает из него, то имеет отрицательный знак. Подставляем в уравнение и получаем I1 + I2 — I3 = 0, или в таком виде I1 + I2 = I3. Второе и третье уравнение берем из второго правила. Для этого используем контур BCDFB и преобразуем формулировку в математическое решение: ε2 = I2 × R2 + I3 × R3. Для участка ACDKA получаем соответственно ε1 = I1 × R1 + I3 × R3. Для наглядности вынесем их отдельно.

I1 + I2 = I3

ε1 = I1 × R1 + I3 × R3

ε2 = I2 × R2 + I3 × R3

Получилось три задачи. Определимся с номиналами. Первый источник питания равен 6 В, второй – 12 В

Хотя так поступать нельзя, потому что параллельные источники питания должны быть одинаковыми, но нам это пригодится для получения важного урока. Первое сопротивление равно 2 Ом, второе – 4 Ом, третье – 8 Ом

Осталось вставить данные в уравнения и получаем: для второго номера 6 = 2I1 + 8I3, для третьего номера 12 = 4I2 + 8I3. Дальше избавляемся от общего неизвестного I3. Согласно первому пункту, он равен I1 + I2. Подставляем вместо него эту сумму и получаем: 6 = 2I1 + 8(I1 + I2), 12 = 4I2 + 8(I1 + I2). Раскрываем скобки и складываем одинаковые неизвестные: 6 = 10I1 + 8I2; 12 = 12I2 + 8I1. Чтобы найти I1, нужно избавиться от I2. Для этого первое уравнение умножаем на 12, а второе на 8 и получаем: 72 = 120I1 + 96I2; 96 = 96I2 + 64I1. От первого отнимаем второе и записываем остаток -24 = 56I1, или I1 = -24/56 = -6/14 А. Почему ток отрицательный?

Потому что источники питания разные. На втором источнике напряжение выше, чем на первом, поэтому ток идет в обратном направлении. Находим I2, для этого значение I1 вставляем в любое из последних уравнений: 96 = 96I2 — 64 24/56. Разделим левую и правую часть на 96 и получим: 1 = I2 — (64×24)/(96×56) или дробную часть переносим влево, меняя знак. I2 = 1(64×24)/(96×56), после всех сокращений получаем 1 4/14 А. Для нахождения I3 воспользуемся первым номером: I3 = I1 + I2. I3 = -24/56 + 1 4/14 = 1(4×56)/(14×56) — (24×14)/(56×14) = 1 224/784 -336/784 = 1008/784 -336/784 = 672/774 ≈ 0,87А. Получили I1 = -6/14 А, I2 = 1 4/14 А, I3 ≈ 0,87А.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: