Применение гистерезиса в электротехнике и электронике
Намагниченность материалов и особенности переходных процессов следует учитывать при создании двигателей и трансформаторов. При эксплуатации этого оборудования в цепях переменного тока часть потребляемого электричества необходимо использовать для перемагничивания установленного сердечника. Аналогичные явления наблюдаются при работе коммутационных аппаратов. Изучение гистерезиса помогает увеличить КПД силовых машин и преобразователей напряжения, обеспечить необходимую скорость переключения реле.
Триггер Шмидта
На рисунке показана передаточная характеристика триггера Шмидта. Изменение выходного сигнала с определенным запаздыванием применяют для устранения ошибок при передаче информации. Обычный инвертор реагирует на импульсные помехи немедленным переключением. В данном случае временная задержка выполняет полезные функции фильтра. Она помогает корректно воспринимать управляющие сигналы в сложных условиях эксплуатации.
Такие решения применяют в электронике для исключения проблем при дребезге контактов. Расчетное замедление рабочих реакций можно пояснить с помощью типового терморегулятора. Если такое устройство создано без гистерезиса, переключения будут выполняться слишком часто. Однако в реальных условиях (отопление помещения) вполне достаточна точность ±3°C. Увеличив ширину петли, можно установить оптимальный диапазон для поддержания заданного температурного режима.
Описание явления магнитного гистерезиса
Мы знаем, что магнитный поток, создаваемый электромагнитной катушкой, представляет собой величину магнитного поля или силовых линий, создаваемых в данной области, и что его чаще называют «плотностью потока», обозначенным символ B с единицей измерения Тесла, Т.
Мы также знаем из предыдущих уроков, что магнитная сила электромагнита зависит от числа витков катушки, тока, протекающего через катушку, или от типа используемого материала сердечника, и если мы увеличим либо ток, либо число оказывается, мы можем увеличить напряженность магнитного поля H.
Ранее относительная проницаемость, символ µ r, определялась как отношение абсолютной проницаемости µ и проницаемости свободного пространства µ o(вакуум), и это задавалось как постоянная величина. Однако взаимосвязь между плотностью потока B и напряженностью магнитного поля H может быть определена тем фактом, что относительная проницаемость µ r не является постоянной величиной, а функцией интенсивности магнитного поля, что дает плотность магнитного потока как: B = M H .
Тогда плотность магнитного потока в материале будет увеличена в большей степени в результате его относительной проницаемости для материала по сравнению с плотностью магнитного потока в вакууме, µ o H, а для катушки с воздушной сердцевиной это соотношение определяется как:
Таким образом, для ферромагнитных материалов отношение плотности потока к напряженности поля ( B / H ) не является постоянным, а изменяется в зависимости от плотности потока. Тем не менее, для катушек с воздушной сердцевиной или любой сердцевины с немагнитной средой, такой как дерево или пластмасса, это отношение можно считать постоянной величиной, и эта постоянная известна как μ o , проницаемость свободного пространства ( μ o = 4.π.10 -7 ч / м ).
Построив значения плотности потока ( B ) против напряженности поля, ( Н ) мы можем произвести набор кривых , называемых Кривые намагничивания, кривые магнитного гистерезиса или более обычно BH кривые для каждого типа основного используемого материала.
Математические модели гистерезиса
Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса.
Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского, в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Простое параметрическое описание различных петель гистерезиса можно найти в работе.
Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет также получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis).
Терминология
Детально это можно объяснить следующим образом. Гистерезис – это условие, возникающее вследствие воздействия одной физической величины, намагниченности, на другую физическую величину из внешней среды, магнитное поле.
Такое условие можно наблюдать в том случае, если состояние предмета изменяется под давлением внешних условий в этот же и предыдущий период времени.
Нас интересует данное магнитное явление, возникающее в электротехнике
Оно является важной характеристикой для металла, из которого изготавливают сердечник электрической машины или аппарата. Давайте рассмотрим этот процесс с помощью графика
Здесь изображена первоначальная кривая намагничивания ферромагнитного материала. Подробно это можно описать так.
Изначально намагнитив сердечник вплоть до насыщения в отрезке «индукция Bs, напряженность Hs» и снизив напряженность от +Hs до 0, индукция не изменится по кривой 3, а пойдет по проходящему выше участку ABr кривой I. Намагниченность материала останется при Н=0, а поле приобретет характеристику остаточной индукции Br.
При увеличении Н от 0 до значения Н=-Hs, изменится направление тока в катушке и знак напряженности магнитного поля Н. При достижении индукцией нулевых значений при указании напряженности поля Н=Нс, что является коэрцитивной силой, изменится знак и будет достигнута индукция насыщения В=-Вs при Н=-Нs.
Намагнитившись, в течение полного цикла зависимостью B (H) описывается петля I, которая называется предельная петля магнитного гистерезиса. Исходя из величины Pc по предельной петле бывают мягкие и твердые ферромагнетики.
В практических целях это можно описать следующим образом. Проводники пропускают ток и способствуют возникновению магнитного и электрического полей вокруг него. Получение электромагнита происходит путем сматывания провода в катушку и пропуска тока. Индуктивность катушки увеличится при помещении внутри нее сердечника с увеличением сил, возникших у нее.
При использовании магнитотвердых металлов типа стали, мы заметим расширение гистерезиса. Если наш выбор остановится на мягких материалах, то будем наблюдать сужение графика.
Через катушку в цепи с переменным током будут наблюдаться движения тока в разных противоположных направлениях.
Вследствие этого все время будет происходить переворачивание полюсов. Этот процесс является одновременным в случае катушки, у которой отсутствует сердечник.
Однако при его наличии все немного изменится. Произойдет постепенное намагничивание, магнитная индукция возрастет и горизонтальный участок графика, обозначаемый как участок насыщения, будет достигнут.
Если целенаправленно менять направление тока и магнитного поля, то произойдет перемагничивание сердечника. Даже при простом выключении тока и исключении магнитного поля сердечник останется намагниченным, при этом претерпит некоторые изменения.
Для его размагничивания до первоначальных характеристик необходимо создание минусовой напряженности магнитного поля. Значит, катушка с током должны сработать в противоположную сторону.
Обратное перемагничивание происходит также, но при участии нижней ветви.
Это означает, что сердечник будет магнититься за счет части энергии в цепи переменных токов, что приведет к снижению коэффициента полезного действия электродвигателя, трансформатора и нагреву деталей.
Возникает данное явление в работе реле, в иных электромагнитных устройствах и в токе выключения и заключения.
Реле сработает и в выключенном состоянии, если подать немного тока. При включении ток заключения будет выше тока удержания. Отключение произойдет, если эти величины изменятся на прямо противоположные значения.
Виды гистерезиса в физике
Что является источником магнитного поля
Для решения практических электротехнических задач следует изучить подробно магнитный гистерезис. Полное представление об аналогичных явлениях на основе физических принципов можно получить после рассмотрения сегнетоэлектрических и упругих процессов.
Магнитный гистерезис
В соответствии с базовым определением, это явление обозначает отставание намагниченности (М) материала от изменяющегося воздействия внешнего поля. Для эксперимента можно собрать схему, в которой ток пропускают через соленоид. Регулируют уровень напряженности (Н) с помощью параллельного переменного резистора. Сердечник – из ферромагнетика.
Схема экспериментальной установки
Важно! Представленные зависимости следует рассматривать в комплексе с графиком на первом рисунке. До начала эксперимента образец обладает нейтральными характеристиками
Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):
До начала эксперимента образец обладает нейтральными характеристиками. Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):
B = μ0*H + μ0*M.
На определенном уровне показатель μ0*M увеличивается до предельного значения. Последующее изменение напряженности внешнего поля не оказывает на него никакого влияния.
Сегнетоэлектрический гистерезис
Причина особой формы графика в этом примере – образование поляризации без приложения сил внешнего поля. Такой эффект наблюдается в определенном температурном диапазоне. Соответствующие материалы называют сегнетоэлектриками.
Сегнетоэлектрики
На первом рисунке показана петля гистерезиса, где отмечены места:
- точкой «а» – состояние насыщения;
- Pc – остаточная поляризованность;
- -Ec– коэрцитивная сила.
На второй части (2) изображено хаотичное (а) и направленное (б) расположение доменов. Ориентацию вдоль линий электростатического поля применяют для создания конденсаторов с изменяемой емкостью.
К сведению. Как и в других веществах, при повышении температуры до уровня точки Кюри намагниченность пропадает.
Упругий гистерезис
Это явление объясняется особыми механическими свойствами отдельных материалов. Они сохраняют созданную достаточно сильным ударным воздействием форму. Типичный пример – изготовление изделий из металла с применением ковки.
Однодоменные ферромагнетики
В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение — образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях — прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.
Гистерезис в отоплении
Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике. Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.
При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.
В таких системах гистерезис выражается в температуре. Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.
Механизм возникновения петли гистерезиса
Энергия электрического поля
Для подробного изучения этого процесса нужно проанализировать отдельные участки кривой, обозначающей изменение индукции. Описание основных этапов:
- сначала наблюдается смещение границ между соседними доменами;
- далее ориентация моментов изменяется быстро в направлении силовых линий внешнего поля;
- на этой стадии новое расположение границ становится необратимым;
- этот участок характеризуется ростом отдельных доменов до максимального размера, магнитные моменты располагаются в точном соответствии линиям воздействующего поля;
- завершающий участок показывает отсутствие влияния на магнитные моменты напряженности, созданной соленоидом.
Если уменьшить силовые параметры внешнего поля, образуется петля гистерезиса что это такое показывать можно на первой картинке (по направлению стрелок)
Следует обратить внимание, что кривые отличаются. Запаздывание индукции соответствует базовым принципам явления
При нулевой напряженности B≠0. Эту величину называют остаточной индукцией. Данная особенность объясняет понятный процесс создания постоянного магнита. Сердечник сохраняет соответствующие свойства даже после отключения источника питания.
Намагниченность можно убрать повешением температуры до уровня точки Кюри определенного материала. Аналогичный результат получают с помощью соответствующего внешнего силового поля (-Hc). Эта напряженность создает коэрцитивную силу, достаточную для размагничивания сердечника из стали либо другого ферромагнетика. Завершенный полностью цикл называют петлей магнитного гистерезиса.
Виды гистерезиса в физике
Что является источником магнитного поля
Для решения практических электротехнических задач следует изучить подробно магнитный гистерезис. Полное представление об аналогичных явлениях на основе физических принципов можно получить после рассмотрения сегнетоэлектрических и упругих процессов.
Магнитный гистерезис
В соответствии с базовым определением, это явление обозначает отставание намагниченности (М) материала от изменяющегося воздействия внешнего поля. Для эксперимента можно собрать схему, в которой ток пропускают через соленоид. Регулируют уровень напряженности (Н) с помощью параллельного переменного резистора. Сердечник – из ферромагнетика.
Схема экспериментальной установки
Важно! Представленные зависимости следует рассматривать в комплексе с графиком на первом рисунке. До начала эксперимента образец обладает нейтральными характеристиками
Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):
До начала эксперимента образец обладает нейтральными характеристиками. Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):
B = μ0*H + μ0*M.
На определенном уровне показатель μ0*M увеличивается до предельного значения. Последующее изменение напряженности внешнего поля не оказывает на него никакого влияния.
Сегнетоэлектрический гистерезис
Причина особой формы графика в этом примере – образование поляризации без приложения сил внешнего поля. Такой эффект наблюдается в определенном температурном диапазоне. Соответствующие материалы называют сегнетоэлектриками.
Сегнетоэлектрики
На первом рисунке показана петля гистерезиса, где отмечены места:
- точкой «а» – состояние насыщения;
- Pc – остаточная поляризованность;
- -Ec– коэрцитивная сила.
На второй части (2) изображено хаотичное (а) и направленное (б) расположение доменов. Ориентацию вдоль линий электростатического поля применяют для создания конденсаторов с изменяемой емкостью.
К сведению. Как и в других веществах, при повышении температуры до уровня точки Кюри намагниченность пропадает.
Упругий гистерезис
Это явление объясняется особыми механическими свойствами отдельных материалов. Они сохраняют созданную достаточно сильным ударным воздействием форму. Типичный пример – изготовление изделий из металла с применением ковки.
Физический процесс при гистерезисе
Чтобы подробно понять процесс гистерезиса
, необходимо досконально изучить следующие понятия:
Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:
- железо;
- кобальт;
- никель;
- соединения на их основе.
Чтобы увидеть гистерезис
, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.
Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.
Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком
. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.
После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.
Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения
. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.
При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.
Гистерезис – это комплексное понятие
, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.
Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.
При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси
, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.
Особенности физического явления
Мы же остановимся именно на гистерезисе в электронной технике, связанным с магнитными процессами в различных веществах. Он показывает, как себя ведет тот или другой материал в электромагнитном поле, а это тем самым позволяет строить графики зависимости и снимать какие-то показания сред, в которых находятся эти самые материалы. Например, этот эффект используется в работе терморегулятора.
Рассматривая более подробно понятие гистерезиса и эффект с ним связанный, можно заметить такую особенность. Вещество, обладающее такой особенностью, способно переходить в насыщение. То есть, это то состояние, при котором оно больше не способно накапливать в себе энергию. А при рассмотрении процесса на примере ферромагнитных материалов энергия выражается намагниченностью, которая возникает благодаря имеющейся магнитной связи между молекулами вещества. А они создают магнитные моменты – диполи, которые в обычном состоянии направлены хаотически.
Намагниченность в данном случае – это принятие магнитными моментами определенного направления. Если же они направлены хаотически, то ферромагнетик считается размагниченным. Но когда диполи направлены в одну сторону, то материал намагничен. По степени намагниченности сердечника катушки можно судить о величине магнитного поля, создаваемого током, протекающим по ней.
Мастерам на все руки будет интересна статья о том, как самостоятельно подключить ходовые огни.