С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В
Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и компоненты:
- ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выводом резистора;
- другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.
Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.
Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.
Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.
После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.
Обычные электрические конденсаторы – это простейшие пассивные устройства, которые предназначены для накопления заряда. Их конструкция – это две металлические пластины, между которыми установлен диэлектрик. В процессе установки нет никакой разницы, каким концом сам прибор будет подключаться к электрической цепи. Но есть их одна разновидность, которая предполагает правильную установку и подключение с учетом полярности, то есть, точного подключения анода (+) и катода (-). Такие конденсаторы называются электролитическими. Поэтому тема этой статьи – как определить полярность конденсатора.
Начнем с того, что конденсатор электролитического типа – это элемент, который вобрал в себя свойства двух видов данного прибора. Это функции пассивного элемента и полупроводникового.
Как узнать где у конденсатора полярность
У большинства элементов принята боле-менее однообразная система маркировки полярности. Обозначение полярности конденсатора имеет несколько типов, которые нетрудно запомнить:
- Внешний вид (форма корпуса, длина и толщина ножек);
- Маркировка (нанесение соответствующих символов у выводов или на корпусе);
- Обозначения на электронных схемах.
По внешнему виду
Как определить полярность конденсатора по внешнему виду? Наиболее просто это сделать для приборов с цилиндрическим корпусом, у которых выводы расположены на противоположных торцах (аксиальный тип корпуса). Даже если маркировка полностью стерта, то тот вывод, который присоединен напрямую к металлическому корпусу, имеет знак «минус».
Вывод, установленный на корпусе через изолятор (в данном месте обычно имеется утолщение или изменение формы корпуса) соответствует положительной полярности, то есть «плюс».
Новые, не спаянные типы алюминиевых конструкций с ножками, расположенными в непосредственной близости друг к другу (радиальный корпус), имеют более длинный положительный вывод.
Иногда в старой аппаратуре можно встретить электролитические конденсаторы с одним выводом, которые крепятся к корпусу конструкции при помощи гайки. Здесь гайка – «минус», вывод «плюс».
Вам это будет интересно Особенности конденсатора
Еще реже попадаются элементы также с гаечным креплением, но с двумя выводами. Принцип маркировки во многом схож с предыдущим случаем, но здесь мы имеем дело со сдвоенным конденсатором, у которого общий «минус» находится на корпусе, а «плюс» расположен на выводах (каждый вывод соответствует отдельной емкости).
По маркировке
Производители также наносят маркировку на корпусе элементов. Здесь может быть несколько вариантов:
- Знак «минус» на боковой поверхности цилиндра со стороны отрицательного вывода;
- Знак «плюс» непосредственно у положительной ножки элемента;
- Широкая темная полоса на торце напротив отрицательного вывода (обычно у твердотельных электролитических конденсаторов.
Обратите внимание! Для SMD компонентов обозначение обратное – широкая светлая или темная полоса возле положительной площадки
По схеме
На электрических схемах конденсаторы обозначаются в виде двух параллельных линий, которые символизируют обкладки. Возле положительного вывода ставят символ «+», или этот вывод обозначают более толстой линией, либо в виде узкого прямоугольника.
Некоторые производители электроники рисуют на схемах отрицательный вывод в виде отрезка дуги.
Не печатных платах электролитический конденсатор имеет такие обозначения полярности:
- Как на электрических принципиальных схемах;
- В виде круга, у которого закрашен узкий сегмент в месте пайки отрицательного вывода.
Как сделать неполярный конденсатор из полярного
Как подобрать конденсатор
Порой случаются ситуации, когда для усилителя или иного прибора нужно применить неполярный конденсаторный элемент, но под рукой присутствуют исключительно полярные. Заменить неполяризованный конденсатор можно парой изделий с полюсами с емкостью, вдвое превышающей ту, которая требуется в схеме. Они соединяются друг с другом встречно-последовательно: идентичные (положительные или отрицательные) выводы соединяются между собой, другие два запаиваются в схему.
Схожий принцип имеет строение НЭК с окисями на обеих обкладках. За счет этого такие продукты имеют более крупные габариты, чем полярные изделия с тем же параметром электролитической емкости. Базируясь на этом же механизме, производят НЭК с опцией пуска, заточенные под эксплуатацию в цепях переменного тока.
Соединение неполярных устройств с целью получения полярного
Плавное выключение светодиода при помощи конденсатора
Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.
Принципиальная схема
Внешний вид макета
Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?
Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.
Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается
С помощью мультиметра
Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В
Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.
Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.
Потребуются следующие устройства и компоненты:
- ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
- мультиметр;
- резистор;
- монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
- маркер для нанесения знаков полярности на корпус проверяемого электролита.
Затем следует собрать электрическую схему:
- параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
- плюсовую клемму ИП соединить с выводом резистора;
- другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.
Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.
Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.
Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.
Ёмкость и напряжение конденсатора
Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение. Ёмкость конденсатора характеризует способность конденсатора накапливать заряд
Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером
Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.
Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.
Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.
Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.
Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.
А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?
Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ
С помощью чего измеряют полярность у конденсатора
Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:
- Переключатель прибора ставят в положение измерения сопротивления.
- Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
- Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
- Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.
Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.
Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции
Обозначение плюса конденсатора
На отечественных советских изделиях обозначался только положительный контакт — знаком «+». Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак «+» ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.
На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак «плюс» нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.
Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком «плюс».
В чем отличие полярного и неполярного конденсатора
Основное отличие между этими двумя типами заключается в структуре диэлектрика, точнее, в его границе с обкладкой. Для наглядности предлагаем рассмотреть рисунок 1, где изображен неполярный керамический конденсатор.
Советуем изучить Что собой представляет контактор, его особенности и схемы подключения
Рисунок 1. Устройство керамической емкости в SMD корпусе
Обозначение элементов конструкции:
- А – контактные электроды;
- В – покрытие;
- С – диэлектрик;
- D – внутренние электроды.
Как видно из рисунка, граница между диэлектриком и обкладкой однородная, соответственно, и взаимодействие между ними одинаковое. Поэтому данный тип элементов не требует соблюдения полярности при монтаже.
Что касается электролитических (полярных) емкостей, то в них структура перехода между обкладкой и диэлектриком отличается для каждой из сторон последнего (катода и анода). Причем различия выражаются как в физических свойствах, так и химическом составе. Для примера рассмотрим, как устроены танталовые электролитические емкости.
Устройство танталового конденсатора полярного типа
Обозначения:
- А – метка, маркирующая анодный контакт;
- В – контактная пластина анода;
- С – внутренний анод на основе гранулированного тантала, в качестве диэлектрика выступает оксид этого химического элемента (Та2О5), формирующийся в процессе работы;
- D – электролит из диоксида марганца (MnO2);
- Е – внутренний катод (смесь серебра и графита);
- F – адгезив на основе серебра, соединяющий внутренний катод с контактной пластиной;
- G – контактная пластина катода;
- H – компаундное покрытие.
При монтаже данного типа емкости необходимо соблюдать полярность. В противном случае элемент не будет выполнять свои функции. Поэтому использовать электролитические емкости можно только в цепи постоянного тока (или импульсного). Применение в цепи переменного напряжения также допустимо, если включение электролитов отвечает определенным условиям. Можно ли заменить электролит неполярной емкостью, расскажем ниже.
Как проверить электролитический конденсатор мультиметром
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
Электролитические неполярные конденсаторы
В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
Неисправность конденсаторов
В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Проверка конденсаторов цифровым мультометром
Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Неполярный электролитический конденсатор
Неполярные электролитические конденсаторы могут находить себе применение в аппаратуре, рассчитанной на питание от сети постоянного тока, где легко может иметь место перемена полярности при включении штепсельной вилки.
Сухие неполярные электролитические конденсаторы имеют две анодные фольги, заформованные в одном электролите при одинаковом напряжении. Технология изготовления таких конденсаторов ничем не отличается от изготовления полярных конденсаторов. Некоторое изменение в технологии имеет место при намотке секций, так как вместо катодной фольги закладывается вторая анодная пластина.
Внешний вид электролитических конденсаторов. |
Изготовляются также неполярные электролитические конденсаторы, в которых обе обкладки имеют оксидный слой.
Конденсаторы, собранные как неполярные электролитические конденсаторы, могут применяться и для включения в цепь переменного тока.
Наряду с полярными имеются сухие неполярные электролитические конденсаторы.
Промышленностью выпускается также несколько типов неполярных электролитических конденсаторов, у которых оксидный слой нанесен на обоих электродах.
Измерения емкости и тангенса угла потерь неполярных электролитических конденсаторов и электролитических конденсаторов переменного тока выполняются теми же методами, что и измерения полярных электролитических конденсаторов. При этих измерениях наложение на конденсаторы поляризующего напряжения постоянного тока не является обязательным.
Как было показано в четвертой главе, емкость неполярного электролитического конденсатора при одинаковой площади обкладок в два раза меньше емкости обычного полярного электролитического конденсатора.
Наряду с обычными, полярными, конденсаторами могут также изготовляться неполярные электролитические конденсаторы, у которых вместо катода используется второй анод.
Полярность сигналов высокого уровня должна быть однозначной, или должны применяться неполярные электролитические конденсаторы.
Конденсаторы с такими обкладками не требуют соблюдения полярности при включении в электрическую цепь; соответственно этому они получили название неполярных электролитических конденсаторов.
Как будет показано ниже, возможно изготовление и н е п о-л я р н ы х электролитических конденсаторов, при включении которых в цепь постоянного тока соблюдение полярности не требуется. Изготовлению неполярного электролитического конденсатора, рассчитанного на длительную работу при переменном напряжении, препятствует большой tg 8, свойственный конденсаторам этого типа.
Распределение зарядов в неполярном электролитическом конденсаторе. а — в момент, когда напряжение проходит через максимум, б — в момент, когда напряжение равно нулю. |
Таким образом, во внешнюю цепь может уходить только половина всего того заряда, который был связан на границах оксидного слоя, когда напряжение на конденсаторе имело максимальное значение. Это обстоятельство приводит к тому, что емкость неполярного электролитического конденсатора в два раза меньше, чем емкость полярного конденсатора, имеющего такую же поверхность анода, какую имеет каждая обкладка неполярного конденсатора.
Полярные и неполярные конденсаторы – в чем отличие
Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества
Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать
Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?
Будет интересно Чем отличаются параллельное и последовательное соединение конденсаторов
В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.
Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.
Полярные и неполярные конденсаторы.
Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.
Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.
Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.
Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.
Полярность конденсатора.
А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.
Будет интересно Что такое ионистор?
На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.
Полярный и неполярный конденсатор
Замена неполярных конденсаторов полярными — что нужно знать?
На самом деле, если под рукой нет неполярного конденсатора, а есть только полярные конденсаторы, то можно произвести их замену по следующей схеме:
- Сначала нужно определить, где именно на плате плюс, а где минус, и затем уже впаивать полярный конденсатор, соблюдая полярность;
- Использовать схему из двух полярных конденсаторов, вместо одного неполярного конденсатора.
Второй способ наиболее предпочтителен, ведь именно он позволяет новичку не углубляться слишком далеко в изучение схемы питания. Достаточно соединить два полярных конденсатора вместе, чтобы получить один неполярный конденсатор.
Соединяются два полярных конденсатора плюсами, а минусу уходят в схему. В итоге получается один неполярный конденсатор.
Например, нам нужно заменить один неполярный конденсатор на 5 мкФ, но его нет под рукой. Тогда мы берём два полярных конденсатора по 10 мкФ, соединяем их плюсами, а минусами впаиваем в плату. Соблюдать при этом полярность нет необходимости, ведь мы из двух полярных конденсаторов получили один неполярный конденсатор.
Результаты испытаний электролитических конденсаторов на срок службы
Испытаниям подвергаются двухполюсники одной партии и одного типа. Они располагаются в термостате, в котором поддерживается рабочая температура. Через элементы пропускается ток, значение напряжения которого равно Uном. Подключение выполняется в правильной полярности. Отдельно детали испытываются прохождением переменного тока заданной частоты и амплитуды. В процессе испытания периодически контролируются все основные и паразитные параметры.
По результатам делается расчёт долговечности и количества часов без случаев отказов. Отличным результатом является 1 отказ в час на партию в 1 миллиард деталей.