Глубина проникновения тока в металл таблица

Применение

Поверхностный эффект позволяет обеспечить локальный нагрев части проводника при пропускании переменного тока. Этот принцип используют, чтобы обогреть трубопровод в зимний период. Правильное применение технологии подразумевает следующие преимущества:

  • отсутствие сопроводительных контрольных и функциональных устройств;
  • практически неограниченная длина трассы;
  • возможность безопасного применения высоких температур.

Частотное распределение плотности токов используют для передачи информационных сигналов по силовым линиям электропередач. При достаточном уменьшении длины волны близость центральной части проводника не будет помехой. Модулированная СВЧ составляющая проходит в поверхностном слое. Для создания пакетов данных и расшифровки применяют специальные кодирующие (декодирующие) устройства.

К сведению. Подобные механизмы используют в нефтяной отрасли для оценки продуктивности скважины. Скин фактор определяет сопротивление перемещению жидкости в близкой технологическому отверстию области пласта. По этому параметру делают оценку реального объема добычи, по сравнению с идеальными условиями.

Падение напряжения на проводе

Итак, если взять неизменной мощность, то при понижении напряжения ток должен возрастать, согласно формуле:

P = I U. (1)

При этом падение напряжения на проводе (потери в проводах) за счет сопротивления рассчитывается, исходя из закона Ома:

U = R I. (2)

Из этих двух формул видно, что при понижении питающего напряжения потери на проводе возрастают. Поэтому чем ниже питающее напряжение, тем большее сечение провода нужно использовать, чтобы передать ту же мощность.

Для постоянного тока, где используется низкое напряжение, приходится тщательно подходить к вопросу сечения и длины, поскольку именно от этих двух параметров зависит, сколько вольт пропадёт зря.

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений

Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Учёт эффекта в технике и борьба с ним

Это явление оказывает заметное влияние по мере увеличения частоты сигнала. Следует учитывать скин эффект при проектировании схем с переменными (импульсными) токами. В частности, делают коррекцию расчета катушки фильтра, колебательного контура, трансформатора.

Типовые способы решения обозначенных проблем:

  • уменьшение толщины проводника;
  • создание полых конструкций;
  • образование поверхностного слоя из металла с лучшей проводимостью;
  • устранение неровностей;
  • плетение из нескольких изолированных жил.

К сведению. Радикальное устранение вредных явлений организуют с помощью передачи электроэнергии постоянным током.

Действие — эффект — вытеснение — ток

Действие эффекта вытеснения тока проявляется в большей степени при большей частоте тока, поэтому в двигательном режиме наибольшая неравномерность распределения плотности тока по сечению стержня наблюдается при s I, когда / 2 / ь При этом же скольжении будет и наибольшее эквивалентное сопротивление обмотки ротора, вызывающее увеличение пускового момента. При разгоне двигателя частота тока в роторе уменьшается if г fis) и соответственно уменьшается сопротивление обмотки. В режимах, близких к номинальному, частота тока в роторе мала, эффект вытеснения тока практически не проявляется и плотность тока одинакова по всему сечению стержней ротора.  

Стержни обмотки в пазах статора.  

Для уменьшения действия эффекта вытеснения тока элементарные проводники при сборке стержня переплетают между собой определенным образом так, чтобы каждый из них на протяжении пазовой части занимал попеременно все возможные положения по высоте стержня. Такое переплетение называют транспозицией.  

Стержни обмотки в пазах статора. / — прокладки на дне паза. 2 — корпусная изоляция стержня.  

Для уменьшения действия эффекта вытеснения тока элементарные проводники при сборке стержня переплетают между собой определенным образом так, чтобы каждый из них на протяжении пазовой части занимал попеременно все возможные положения по высоте стержня.  

Увеличение эквивалентного сопротивления под действием эффекта вытеснения тока проявляется в большей степени в стержнях, поперечное сечение которых имеет большую высоту или уменьшенную площадь верхней части по сравнению с нижней. Поэтому в роторах двигателей, предназначенных для работы с тяжелыми условиями пуска, делают глубокие прямоугольные пазы ( глубокопазные роторы) или стержни обмотки выполняют фигурными. Обмотки роторов с фигурными пазами выполняют в большинстве двигателей заливкой алюминием или его сплавами. Это позволяет выполнять конфигурацию пазов с оптимальными размерными соотношениями стержней для достижения требуемого действия эффекта вытеснения тока.  

Влияние эффекта вытеснения тока.| Конфигурация стержней короткозамкнутых роторов асинхронных двигателей с повышенными пусковыми характеристиками.  

Сопротивление обмотки ротора под действием эффекта вытеснения тока возрастает в большей степени в высоких стержнях и в стержнях с уменьшенной площадью поперечного сечения их верхней части по сравнению с нижней.  

Увеличение эквивалентного сопротивления под действием эффекта вытеснения тока проявляется в большей степени в стержнях, поперечное сечение которых имеет большую высоту или уменьшенную площадь верхней части по сравнению с нижней. Поэтому в роторах двигателей, предназначенных для работы с тяжелыми условиями пуска, делают глубокие прямоугольные пазы ( глубокопазные роторы) или стержни обмотки выполняют фигурными. Обмотки роторов с фигурными пазами выполняют в большинстве двигателей заливкой алюминием или его сплавами. Это позволяет выполнять конфигурацию пазов с оптимальными размерными соотношениями стержней для достижения требуемого действия эффекта вытеснения тока.  

При работе в номинальном режиме и с малыми скольжениями действие эффекта вытеснения тока очень мало и ток распределяется равномерно по обеим обмоткам пропорционально их активному сопротивлению. Обмотку, образованную нижними стержнями, называют рабочей.  

Схемы замещения фазы обмотки приведенной асинхронной машины.  

Увеличение скольжения в двигателях с короткозамкнутым ротором приводит к возрастанию действия эффекта вытеснения тока, что вызывает изменение сопротивлений обмотки ротора гг и хг. При расчете рабочих режимов машины в пределах изменения скольжения от холостого хода до номинального эти изменения незначительны и ими обычно пренебрегают.  

Обмотку короткозамкнутых роторов с фигурными стержнями выполняют в основном заливкой пазов алюминием, что позволяет выбрать конфигурацию пазов и стержней с оптимальными размерными соотношениями для достижения требуемого действия эффекта вытеснения тока. Лишь некоторые АД большой мощности выполняют с медными фигурными стержнями.  

Катушка двухслойной об.  

В проводниках обмотки статора асинхронных машин эффект вытеснения тока проявляется незначительно из-за малых размеров элементарных проводников. Некоторое увеличение потерь, обусловленное действием эффекта вытеснения тока, относят к дополнительным потерям.  

Поверхностный эффект в проводнике. Скин-эффект. Частотные свойства.

Поверхностный эффект в проводнике. Скин-эффект. Частотные свойства.

Переменный ток сопровождается электромагнитными явлениями, которые приводят к вытеснению электрических зарядов с центра проводника на его периферию. Этот эффект называется — поверхностным эффектом, или скин-эффектом. В результате этого эффекта ток становится неоднородным. На периферии ток оказывается большим по величине, чем в центре. Это происходит из-за различия в плотности свободных носителей зарядов в перпендикулярном сечении проводника относительно направления тока.

Глубина проникновения тока определяется согласно выражению:

Используя приведённую выше формулу для медного проводника получаем, что при частоте тока в 50 Гц глубина проникновения составит приблизительно 9,2 мм. Фактически это означает, что имея проводник с круглым сечением с радиусом более 9,2 мм, ток в центре проводника будет отсутствовать, потому как там не будет свободных носителей зарядов.

Чем выше частота тока, тем меньше глубина проникновения. Увеличение частоты тока в два раза повлечет за собой уменьшение глубины проникновения в корень квадратный из двух. Если частота тока увеличится в 10 раз, то, соответственно, глубина проникновения уменьшится в корень из 10 раз.

График распределения тока.

На графике наглядно показано распределение плотности тока J в проводнике круглого сечения (цилиндрический). За пределами глубины проникновения плотность тока равна нулю или же ничтожно мала, потому как в этих местах проводника отсутствуют свободные электроны. Ток в этих местах отсутствует.

Если из центра такого проводника где отсутствует ток, извлечь проводящий материал, то мы получим полый проводник в виде трубки (трубчатый). Проводящие характеристики от этого не изменятся, потому как тока там и не было, сопротивление такого проводника не изменится, но могут поменяться такие характеристики как индуктивность и емкость проводника.

Сопротивление проводника в цепи переменного тока зависит не только от материала проводника, но также от частоты тока. При высоких частотах, за счет скин-эффекта, весь ток начинает протекать практически по границе проводника, там где он контактирует со внешней, не проводящей средой.

Практическое использование скин-эффекта.

Распределение плотности тока в проводнике в зависимости от частоты тока позволяет по одному проводу передавать электрические сигналы разных частот. Сигналы более высокой частоты проходят по внешнему радиусу (большему) проводника, а сигналы меньшей частоты по меньшему радиусу. Получается нечто вроде слоенного пирога цилиндрической формы, где начинка распределяется сферически. Каждый вид начинки — это как бы отдельная частота тока.

Учитывая глубину проникновения тока для разных частот, если требуется проводник с радиусом большим, чем глубина проникновения, то разумно применять многожильный кабель. Скажем так, для 50 Гц частоты тока, предельный радиус примерно 9 мм, а это значит, что нет смысла эксплуатировать цельный проводник с радиусом больше 9 мм. Это не даст никакого увеличения проводимости, потому как ток в центре проводника будет отсутствовать, что является нерациональным использованием дорогостоящей меди. Вот поэтому при больших сечениях применяют многожильные провода и кабели.

При передачи высокочастотных сигналов, в целях экономии цветного металла, основной несущий провод изготавливают из дешевого стального сплава, который затем покрывают тонким слоем меди. Благодаря скин-эффекту ток протекает практически только по медной оболочке, а в стальном основании он отсутствует. Это позволяет значительно удешевить провода и кабели для высокочастотных средств связи.

Дата: 27.05.2016

Valentin Grigoryev (Валентин Григорьев)

Тег статьи: Электрический ток

Все теги раздела Электротехника:Электричество Закон Ома Электрический ток Электробезопасность Устройства Биоэлектричество Характеристики Физические величины Электролиз Электрические схемы Асинхронные двигатели

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Поверхностный эффект и его влияние на нагрев

Поверхностный эффект (скин эффект) – это эффект оттеснения переменного электрического тока, протекающего через проводник, к его периферии, вызванный переменным магнитным полем, создаваемым этим током.

Этот эффект имеет высокое значение в области высоких частот и приводит к существенному сокращению эффективной площади сечения проводников. Это приводит к повышенному тепловыделению в проводниках при протекании через них электрического тока и в большинстве случаев требует принятия дополнительных мер для ослабления поверхностного эффекта.

Как это работает

Механизм возникновения поверхностного эффекта стоит рассмотреть на примере проводника круглого сечения, по которому протекает переменный электрический ток. На рисунке представлен проводник в разрезе которого отражены протекающие при скин-эффекте процессы.

Протекание электрического тока вдоль проводника приводит к возникновению магнитного поля, силовые линии которого изображены на рисунке пунктирной линией. Вектор магнитной индукции B при этом всегда направлен по касательной к силовой линии магнитного поля. Поскольку ток j, протекающий через проводник переменный, вектор индукции магнитного поля также изменяет свою величину и направление с прямого на противоположное с частотой протекающего тока. Изменение вектора магнитной индукции приводит, в соответствии с законом Фарадея, к возникновению напряженности электрического поля E. В проводнике это приводит к возникновению вихревых токов, встречных току j в центральной области проводника и сонаправленных ему на периферии.

Физически это можно представить как возникновение дополнительной распределенной электродвижущей силы внутри проводника, сонаправленной с направлением протекания тока вблизи периферии проводника и противонаправленной вблизи его оси. Этот эффект приводит к неравномерному распределению протекающего электрического тока в проводнике, при котором большая часть тока протекает в поверхностном слое.

График распределения плотности тока представлен на рисунке. Эта зависимость имеет экспоненциальный характер и недостаточно удобна при оценке. Поэтому в инженерных расчетах делается следующее упрощение. Глубина, на которой величина плотности тока в 2,7 раза меньше максимальной считается пограничной, и по этой границе формируется условный внешний слой толщиной Δ, по которому равномерно протекает весь ток проводника. Во внутренней же части проводника (обозначена белым) считается, что ток не протекает. Этот внешний слой называется скин-слоем, а его величина определяется свойствами материала проводника и частотой протекающего тока.

Из рисунка видно, что сечение проводника, по которому протекает электрический ток, может быть значительно меньше действительного сечения проводника. Это приводит к избыточному нагреву проводника и потерям электрической мощности на этот нагрев. В условиях передачи высокочастотной электроэнергии по проводнику этот нагрев является крайне нежелательным и требует специальных мер по его снижению.

Толщина скин-слоя зависит от частоты, удельного электрического сопротивления материала и его магнитной проницаемости. Ярко выраженное изменение толщины скин-слоя происходит при нагреве сплавов на основе железа в сечении заготовки при переходе точки Кюри: толщина скин-слоя при этом увеличивается на порядок и визуально наблюдается утолщение области нагрева.

Поверхностный эффект имеет огромное значение в индукционном нагреве, поскольку с его помощью можно концентрировать выделение тепловой энергии в поверхности заготовки. Это связано с тем, что нагрев производится вихревыми переменными токами внутри детали, которые протекают также, как и в рассмотренном проводнике — во внешних слоях материала. Это широко используется, например, при поверхностной закалке, когда закаливается только поверхность детали, не изменяя металл в глубине. Для многих задач именно поверхности требуют особой твердости материала.

Использование высоких частот для объемного нагрева возможно, однако в этом случае, поскольку энергия выделяется в тонком слое, нагрев более глубоких зон будет производится только за счет теплопроводности металла, что увеличивает длительность нагрева и снижает ее равномерность.

Таким образом, для глубинного равномерного нагрева крупных стальных заготовок следует использовать более низкие частоты, в то время как для нагрева небольших деталей, поверхностной закалки или для нагрева немагнитных металлов необходимы установки с более высокими рабочими частотами.

§ 100. Электрический ток. Сила тока (окончание)

Глава 15. Законы постоянного тока

Связь силы тока со скоростью направленного движения частиц. Пусть цилиндрический проводник (рис. 15.2) имеет поперечное сечение площадью S. За положительное направление тока в проводнике примем направление слева направо. Заряд каждой частицы будем считать равным q0. В объёме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием Δl между ними, содержится nSΔl частиц, где n — концентрация частиц (носителей тока). Их общий заряд в выбранном объёме q = q0nSΔl. Если частицы движутся слева направо со средней скоростью υ, то за время все частицы, заключенные в рассматриваемом объёме, пройдут через поперечное сечение 2. Поэтому сила тока равна:

Важно В СИ единицей силы тока является ампер (А). Эта единица установлена на основе магнитного взаимодействия токов

Эта единица установлена на основе магнитного взаимодействия токов.

Измеряют силу тока амперметрами

. Принцип устройства этих приборов основан на магнитном действии тока.

Определите среднюю квадратичную скорость теплового движения свободных электронов, рассматривая электронный газ как идеальный.

Сделайте вывод.

Скорость упорядоченного движения электронов в проводнике. Найдём скорость упорядоченного перемещения электронов в металлическом проводнике. Согласно формуле (15.2) где е — модуль заряда электрона.

Пусть, например, сила тока I = 1 А, а площадь поперечного сечения проводника S = 10-6 м2. Модуль заряда электрона е = 1,6 • 10-19 Кл. Число электронов в 1 м3 меди равно числу атомов в этом объёме, так как один из валентных электронов каждого атома меди является свободным. Это число есть n ≈ 8,5 • 1028 м-3 (это число можно определить, если решить задачу 6 из § 54). Следовательно,

Как видите, скорость упорядоченного перемещения электронов очень мала. Она во много раз меньше скорости теплового движения электронов в металле.

Условия, необходимые для существования электрического тока.

Важно Для возникновения и существования постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц. Однако этого ещё недостаточно для возникновения тока

Однако этого ещё недостаточно для возникновения тока.

Важно Для создания и поддержания упорядоченного движения заряженных частиц необходима сила, действующая на них в определённом направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за столкновений с ионами кристаллической решётки металлов или нейтральными молекулами электролитов и электроны будут двигаться беспорядочно

Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за столкновений с ионами кристаллической решётки металлов или нейтральными молекулами электролитов и электроны будут двигаться беспорядочно.

На заряженные частицы, как мы знаем, действует электрическое поле с силой

= q.

Важно Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю

Если внутри проводника имеется электрическое поле, то между концами проводника в соответствии с формулой (14.21) существует разность потенциалов. Как показал эксперимент, когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный электрический ток

. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального на другом, так как положительный заряд под действием сил поля перемещается в сторону убывания потенциала.

Ключевые слова для поиска информации по теме параграфа. Сила тока. Электронная теория проводимости

Вопросы к параграфу

  • 1. Что определяет среднюю скорость дрейфа свободных электронов?

2. Почему единицу тока определяют по магнитному взаимодействию?

Образцы заданий ЕГЭ

А1.

Время рабочего импульса ускорителя электронов равно 1 мкс. Средняя сила тока, создаваемого этим ускорителем, 32 кА. Определите число электронов, ускоряемых за один пуск ускорителя. Заряд электрона qe = 1,6 • 10-19 Кл.

1) 4 • 1016 2) 8 • 1017 3) 1017 4) 2 • 1017

А2.

На электроды вакуумного диода подаётся переменное напряжение, в результате чего сила тока, проходящего через этот диод, равномерно увеличивается за 2 мкс от 0 до 12 А. Определите заряд, который прошёл через диод за это время.

1) 36 мкКл 2) 12 мкКл 3) 36 мКл 4) 1,6 • 10-19 Кл.

А3.

По проводнику идёт постоянный электрический ток. Значение заряда, прошедшего через проводник, возрастает с течением времени согласно графику, представленному на рисунке. Сила тока в проводнике равна

1) 36 А 3) 6 А 2) 16 А 4) 1 А

Следующая страница >>>

Практическое использование скин-эффекта.

Распределение плотности тока в проводнике в зависимости от частоты тока позволяет по одному проводу передавать электрические сигналы разных частот. Сигналы более высокой частоты проходят по внешнему радиусу (большему) проводника, а сигналы меньшей частоты по меньшему радиусу. Получается нечто вроде слоенного пирога

цилиндрической формы, где начинка распределяется сферически. Каждый вид начинки — это как бы отдельная частота тока.

Учитывая глубину проникновения тока для разных частот, если требуется проводник с радиусом большим, чем глубина проникновения, то разумно применять многожильный кабель. Скажем так, для 50 Гц частоты тока, предельный радиус примерно 9 мм, а это значит, что нет смысла эксплуатировать цельный проводник с радиусом больше 9 мм. Это не даст никакого увеличения проводимости, потому как ток в центре проводника будет отсутствовать, что является нерациональным использованием дорогостоящей меди. Вот поэтому при больших сечениях применяют многожильные провода и кабели.

При передачи высокочастотных сигналов, в целях экономии цветного металла, основной несущий провод изготавливают из дешевого стального сплава, который затем покрывают тонким слоем меди

. Благодаря скин-эффекту ток протекает практически только по медной оболочке, а в стальном основании он отсутствует. Это позволяет значительно удешевить провода и кабели для высокочастотных средств связи.

Дата: 27.05.2016

Valentin Grigoryev (Валентин Григорьев)

Способы подавления скин эффекта

Перечисленные методики имеют особое значение при работе с высокочастотными радиосигналами. В частности, для улучшения проводимости поверхностный слой создают из серебра, платины, других благородных металлов. Следующие рекомендации применяют на практике при создании качественной аудио аппаратуры:

  • для пропускания сигналов используют тонкие (0,25-0,35 мм) жилы;
  • плетением кабеля устраняют значительные искажения силовых линий магнитного поля;
  • надежной изоляцией предотвращают окисление меди;
  • проверяют наличие поблизости других линий, способных оказывать вредное взаимное влияние.


Оптоволоконная линия связи

При переходе в СВЧ диапазон сигналы передают по волноводам. Устраняют возможные негативные проявления с помощью передачи данных сигналами в оптическом диапазоне.

Формула

Плотность переменного тока J в проводнике экспоненциально уменьшается от своего значения на поверхности J S в
соответствии с глубиной d от поверхности следующим образом:

Jзнак равноJSе-(1+j)dδ{\ Displaystyle J = J _ {\ mathrm {S}} \, e ^ {- {(1 + j) d / \ delta}}}

где называется глубиной скин-слоя . Таким образом, глубина скин-слоя определяется как глубина под поверхностью проводника, на которой плотность тока упала до 1 / е (около 0,37) Дж · с . Мнимая часть показателя степени показывает, что фаза плотности тока задерживается на 1 радиан для каждой глубины проникновения скин-слоя. Одна полная длина волны в проводнике требует 2π глубины скин-слоя, в этот момент плотность тока ослабляется до e −2π (1,87 × 10 -3 , или -54,6 дБ) от его поверхностного значения. Длина волны в проводнике намного короче, чем длина волны в вакууме , или, что то же самое, в проводнике намного меньше, чем скорость света в вакууме. Например, радиоволна с частотой 1 МГц имеет длину волны в вакууме λ около 300 м, тогда как в меди длина волны уменьшается до примерно 0,5 мм с фазовой скоростью только примерно 500 м / с. Вследствие закона Снеллиуса и этой очень крошечной фазовой скорости в проводнике любая волна, попадающая в проводник, даже при скользящем падении, преломляется в основном в направлении, перпендикулярном поверхности проводника.
δ{\ displaystyle \ delta}

Общая формула для определения глубины скин-слоя при отсутствии диэлектрических или магнитных потерь:

δзнак равно2ρωμ1+(ρωε)2+ρωε{\ displaystyle \ delta = {\ sqrt {{2 \ rho} \ over {\ omega \ mu}}} \; \; {\ sqrt {{\ sqrt {1+ \ left ({\ rho \ omega \ varepsilon}) \ right) ^ {2}}} + \ rho \ omega \ varepsilon}}}

куда

ρ{\ displaystyle \ rho} = удельное сопротивление проводника
ω{\ displaystyle \ omega}= угловая частота тока = , где — частота.2πж{\ displaystyle 2 \ pi f}ж{\ displaystyle f}
μ{\ displaystyle \ mu}= проницаемость проводника,μр{\ displaystyle \ mu _ {r}}μ{\ displaystyle \ mu _ {0}}
μр{\ displaystyle \ mu _ {r}}= относительная магнитная проницаемость проводника
μ{\ displaystyle \ mu _ {0}}= проницаемость свободного пространства
ε{\ Displaystyle \ varepsilon}= диэлектрическая проницаемость проводника,εр{\ displaystyle \ varepsilon _ {r}}ε{\ displaystyle \ varepsilon _ {0}}
εр{\ displaystyle \ varepsilon _ {r}}= относительная диэлектрическая проницаемость проводника
ε{\ displaystyle \ varepsilon _ {0}}= диэлектрическая проницаемость свободного пространства

На частотах намного ниже количество внутри большого радикала близко к единице, и формула обычно имеет вид:
1ρϵ{\ displaystyle 1 / \ rho \ epsilon}

δзнак равно2ρωμ{\ displaystyle \ delta = {\ sqrt {{2 \ rho} \ over {\ omega \ mu}}}}.

Эта формула действительна на частотах, далеких от сильных атомных или молекулярных резонансов (где была бы большая мнимая часть), и на частотах, которые намного ниже как плазменной частоты материала (зависящей от плотности свободных электронов в материале), так и обратной величины. среднее время между столкновениями с участием электронов проводимости. В хороших проводниках, таких как металлы, все эти условия обеспечиваются, по крайней мере, до микроволновых частот, что подтверждает справедливость этой формулы. Например, в случае меди это верно для частот намного ниже 10 18  Гц.
ϵ{\ displaystyle \ epsilon}

Однако в очень плохих проводниках на достаточно высоких частотах множитель под большим радикалом увеличивается. На частотах, намного превышающих допустимые, можно показать, что глубина скин-слоя вместо того, чтобы продолжать уменьшаться, приближается к асимптотическому значению:
1ρϵ{\ displaystyle 1 / \ rho \ epsilon}

δ≈2ρεμ{\ displaystyle \ delta \ приблизительно {2 \ rho} {\ sqrt {\ varepsilon \ over \ mu}}}

Это отклонение от обычной формулы применимо только к материалам с довольно низкой проводимостью и на частотах, где длина волны вакуума не намного больше самой глубины скин-слоя. Например, объемный кремний (нелегированный) является плохим проводником и имеет толщину скин-слоя около 40 метров на частоте 100 кГц (λ = 3000 м). Однако, поскольку частота увеличивается до мегагерцового диапазона, глубина его скин-слоя никогда не опускается ниже асимптотического значения 11 метров. Вывод состоит в том, что в плохих твердых проводниках, таких как нелегированный кремний, скин-эффект не нужно учитывать в большинстве практических ситуаций: любой ток равномерно распределяется по поперечному сечению материала независимо от его частоты.

Поверхностный эффект и его влияние на нагрев

Поверхностный эффект (скин эффект) – это эффект оттеснения переменного электрического тока, протекающего через проводник, к его периферии, вызванный переменным магнитным полем, создаваемым этим током.

Этот эффект имеет высокое значение в области высоких частот и приводит к существенному сокращению эффективной площади сечения проводников. Это приводит к повышенному тепловыделению в проводниках при протекании через них электрического тока и в большинстве случаев требует принятия дополнительных мер для ослабления поверхностного эффекта.

Как это работает

Механизм возникновения поверхностного эффекта стоит рассмотреть на примере проводника круглого сечения, по которому протекает переменный электрический ток. На рисунке представлен проводник в разрезе которого отражены протекающие при скин-эффекте процессы.

Протекание электрического тока вдоль проводника приводит к возникновению магнитного поля, силовые линии которого изображены на рисунке пунктирной линией. Вектор магнитной индукции B при этом всегда направлен по касательной к силовой линии магнитного поля. Поскольку ток j, протекающий через проводник переменный, вектор индукции магнитного поля также изменяет свою величину и направление с прямого на противоположное с частотой протекающего тока. Изменение вектора магнитной индукции приводит, в соответствии с законом Фарадея, к возникновению напряженности электрического поля E. В проводнике это приводит к возникновению вихревых токов, встречных току j в центральной области проводника и сонаправленных ему на периферии.

Физически это можно представить как возникновение дополнительной распределенной электродвижущей силы внутри проводника, сонаправленной с направлением протекания тока вблизи периферии проводника и противонаправленной вблизи его оси. Этот эффект приводит к неравномерному распределению протекающего электрического тока в проводнике, при котором большая часть тока протекает в поверхностном слое.

График распределения плотности тока представлен на рисунке. Эта зависимость имеет экспоненциальный характер и недостаточно удобна при оценке. Поэтому в инженерных расчетах делается следующее упрощение. Глубина, на которой величина плотности тока в 2,7 раза меньше максимальной считается пограничной, и по этой границе формируется условный внешний слой толщиной Δ, по которому равномерно протекает весь ток проводника. Во внутренней же части проводника (обозначена белым) считается, что ток не протекает. Этот внешний слой называется скин-слоем, а его величина определяется свойствами материала проводника и частотой протекающего тока.

Из рисунка видно, что сечение проводника, по которому протекает электрический ток, может быть значительно меньше действительного сечения проводника. Это приводит к избыточному нагреву проводника и потерям электрической мощности на этот нагрев. В условиях передачи высокочастотной электроэнергии по проводнику этот нагрев является крайне нежелательным и требует специальных мер по его снижению.

Толщина скин-слоя зависит от частоты, удельного электрического сопротивления материала и его магнитной проницаемости. Ярко выраженное изменение толщины скин-слоя происходит при нагреве сплавов на основе железа в сечении заготовки при переходе точки Кюри: толщина скин-слоя при этом увеличивается на порядок и визуально наблюдается утолщение области нагрева.

Поверхностный эффект имеет огромное значение в индукционном нагреве, поскольку с его помощью можно концентрировать выделение тепловой энергии в поверхности заготовки. Это связано с тем, что нагрев производится вихревыми переменными токами внутри детали, которые протекают также, как и в рассмотренном проводнике — во внешних слоях материала. Это широко используется, например, при поверхностной закалке, когда закаливается только поверхность детали, не изменяя металл в глубине. Для многих задач именно поверхности требуют особой твердости материала.

Использование высоких частот для объемного нагрева возможно, однако в этом случае, поскольку энергия выделяется в тонком слое, нагрев более глубоких зон будет производится только за счет теплопроводности металла, что увеличивает длительность нагрева и снижает ее равномерность.

Таким образом, для глубинного равномерного нагрева крупных стальных заготовок следует использовать более низкие частоты, в то время как для нагрева небольших деталей, поверхностной закалки или для нагрева немагнитных металлов необходимы установки с более высокими рабочими частотами.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: