Запишите формулу для определения емкостного сопротивления

Что надо знать про электрические процессы

Если говорить простым языком, то под сопротивлением принято понимать свойство среды, по которой протекает электрический ток, снижающее его величину.

Так работают провода и изоляторы высоковольтной линии электропередач, показанные на верхней картинке, да и любое вещество.

Изоляторы обладают очень высокими диэлектрическими свойствами, изолируют высоковольтное напряжение, присутствующее на токоведущих шинах от контура земли. Это их основное назначение.

Провода же должны максимально эффективно передавать транслируемые по ним мощности. Их создают так, чтобы они обладали минимальным электрическим сопротивлением, работали с наименьшими потерями энергии на нагрев.

В этом случае передача электричества от источника напряжения к потребителю на любое расстояние будет проходить эффективно.

Приведу для примера картинку из предыдущей моей статьи.

Ее, как и верхнюю, можно представить таким обобщенным видом.

На внешнем участке цепи токоведущие жилы отделены друг от друга воздушной средой и слоем изоляции с высокими диэлектрическими свойствами.

Хорошей проводимостью обладают токоведущие жилы. Подключенный к ним электрический прибор функционирует оптимально.

Как работает резистор

Ток в металлах проходит под действием приложенного напряжения за счет направленного движения электронов. При этом они соударяются, встречаются с положительно и отрицательно заряженными ионами.

Такие столкновения повышают температуру среды, уменьшают силу тока.

За направление электрического тока в электротехнике принято движение заряженных частиц от плюса к минусу. Электроны же движутся от катода к аноду.

Электрическое сопротивление металла зависит от его структуры и геометрических размеров.

Аналогичные процессы протекают в любой другой токопроводящей среде, включая газы или жидкости.

Какие существуют виды сопротивлений

В домашних электрических приборах используется большое разнообразие резисторов с постоянной или регулируемой величиной.

Они ограничивают величину тока всех бытовых устройств, а в наиболее сложных модулях их количество может достигать тысячи или более. Резисторы работают практически во всех схемах.

При использовании в цепях переменного тока они обладают активным сопротивлением, а конденсаторы и дроссели — реактивным.

Причем, на конденсаторах создается емкостное сопротивление, а у дросселей — индуктивное.

Реактивная составляющая на конденсаторах и дросселях сильно зависит от частоты электромагнитного колебания.

2 Шутки электриков о токах через конденсатор и дроссель

Их я привожу потому, что они позволяют запомнить характер прохождения тока через реактивные элементы.

Шутка №1 о емкости

В домашней сети и внутри многих приборов работают переменный и постоянный токи. Они по-разному ведут себя, если встречают на своем пути конденсатор.

Поскольку он состоит из двух токопроводящих пластин, разделенных слоем диэлектрика, то его обозначают на схемах двумя жирными черточками, расположенными параллельно. К их серединам подключены провода, нарисованные перпендикулярными линиями.

Переменный ток имеет форму гармоничной синусоиды, состоящей из двух симметричных половинок.

Такая гармоника движется от начала координат, встречает на своем пути обкладки, переваливается через них и, скатившись, начинает обгонять приложенное напряжение.

Постоянный ток таким свойством не обладает. Его тупой конец просто упирается в обкладку и останавливается. Пройти через конденсатор он не может. Это для него непреодолимое препятствие.

Шутка №2 о дросселе

Индуктивность выполнена витками изолированного провода. Любой ток проходит по нему. Но синусоида своими волнами путается в витках катушки, начинает отставать от напряжения.

Постоянка же спокойно перемещается внутри провода дросселя без ощущения какого-либо значительного противодействия. Поэтому постоянное напряжение может своим током спалить дроссель, созданный для работы на переменке.

Что же это за зверь: сверхпроводимость

Сто лет назад выявлена способность определенных металлов полностью терять свое сопротивление электрическому току при сверхнизких температурах. Выглядит этот процесс следующим образом.

Со сверхпроводниками домашний мастер не работает

Но на верхнюю часть приведенного графика рекомендую обратить внимание: нагрев металла повышает его электрическое сопротивление

При электротехнических расчетах, требующих получения точного результата, необходимо учитывать температурный коэффициент, взятый из справочников.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует. Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками

При расчёте требуемой ёмкости обычно исходят из следующих соображений:

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Основные понятия

Ёмкостное сопротивление — это величина, которая создаётся конденсатором, включённым в цепь. Сопротивление подводящих проводов должно быть непренебрежимо большим. При подаче переменного тока возникают процессы, обусловленные периодическим зарядом и разрядом конденсатора.

Период разбивается на четыре четверти. В течение первой четверти напряжение растёт. В этот момент по цепи проходит зарядный ток, сила которого будет уменьшаться, достигнув нуля, когда электродвижущая сила достигнет положительного максимума. Конденсатор полностью заряжен. После этого начнётся спад напряжения. Конденсатор будет разряжаться через подключённую к нему нагрузку. По цепи потечёт ток.

К концу полупериода величина напряжения будет равна нулю, а сила тока будет наибольшей. Разрядка завершена. В начале третьей четверти электродвижущая сила будет возрастать, изменив своё направление. Вновь начнётся процесс заряда. Направление зарядного тока в третью четверть будет таким же, как и в предыдущую. По мере зарядки конденсатора эта величина будет убывать. К концу третьей четверти процесс зарядки будет завершён.

Электродвижущая сила достигнет своего наибольшего отрицательного значения. А на той обкладке, на которой в течение первого полупериода был положительный заряд, теперь будет отрицательный. Во время четвёртой четверти значение электродвижущей силы снова будет стремиться к нулю. Конденсатор будет разряжаться. Соответственно, в цепи появится постепенно нарастающий ток. Процесс повторяется. Таким образом, фаза переменного тока в конденсаторной цепи опережает фазу напряжения на 90 градусов.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Расчет

Основную формулу нахождения показания проводника можно вычислить или представить как R=U/I, где U является разностью напряжения на проводниковых концах, а I считается силой тока, которая протекает под разностью напряжения. Получается значение, представленное в Омах.

Вам это будет интересно Особенности трехфазного тока

Обратите внимание! В дополнение к теме, как определить сопротивление резистора по формуле, правильно вычислять необходимые показания также можно при помощи специального измерительного прибора под названием омметр или мультиметр. Формула, используемая повсеместно для расчета


Формула, используемая повсеместно для расчета

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

На практике всё немного по-другому. Чем ближе частота сигнала приближается к нулевому значению, тем больше становится сопротивление конденсатора, но при этом разрыв цепи наступить всё равно не может. Связанно это с током утечки. В случае когда частота стремится к бесконечности, сопротивление конденсатора должно становиться нулевым, но этого тоже не происходит — из-за присутствия паразитной индуктивности и всё того же тока утечки.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует. Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

При расчёте требуемой ёмкости обычно исходят из следующих соображений:

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.


Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Свойства емкостей

Общее сопротивление

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Последовательное соединение конденсаторов.

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Понятие сопротивление доходчиво

Это величина, определяющая способность полупроводникового элемента пропускать сквозь себя электрический ток. Дать общее понятие можно опираясь на основы строения металлов. Состоит металл из кристаллической решётки, между элементами которой путешествуют электроны. Внешнее поле заставит их при перемещении создавать электрический ток. Решётка позволяет им двигаться по заданному объёму, а электроны будут тереться о её узлы и не смогут протиснуться. Данное явление и называется сопротивлением, а именно: сила, которая будет мешать перемещению.

Ещё проще можно представить на основе ситечка, на раковине. Вода будет проходить медленнее, чем если бы проходила без него.

@yaklass.ru

Формула емкостного сопротивления

Для того чтобы определиться с ёмкостным сопротивлением в той или иной схеме, потребуется выявить следующие параметры:

  • Частота протекающего в цепочке переменного тока;
  • Номинальное значение ёмкости конденсатора;
  • Наличие в цепи других радиотехнических элементов.

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле:

Xс=1/ ω C.

Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Благодаря такому характеру его изменения, конденсаторы могут работать в следующих частотно-зависимых схемах:

  • Интегральные и дифференциальные устройства;
  • Резонансные цепочки различного класса;
  • Специальные фильтрующие элементы.

Добавим к этому возможность использования конденсаторов в качестве демпферных элементов в цепи переменного тока, нагруженной на мощные (силовые) агрегаты.

Формула ёмкостного сопротивления

При подаче на обкладки конденсатора переменного напряжения ток через этот элемент первоначально стремится к максимальному значению. По мере заряда прибора он постепенно снижается. В то же время вольтаж ведёт себя иначе, т.е. плавно возрастает от нуля до максимального значения.

Подобный эффект вызван ёмкостным сопротивлением. Оно зависит как от строения самого электронного прибора, так и от характеристик поданного на него переменного напряжения.

Формула расчёта сопротивления

Где:

  • XC – реактивное сопротивление, ом;
  • p – 3,14;
  • f – частота переменного напряжения, приложенного к обкладкам, Гц;
  • C – ёмкость, Ф.

Обратите внимание! Ёмкость элемента можно узнать по маркировке, имеющейся на его корпусе. Если она нечитаемая или стёрлась, то эта величина определяется с помощью мультиметра

Он должен быть с функцией замера ёмкости (прим. DT9208A).

ЗАДАЧА №1. Расчёт простых цепей постоянного тока со смешанным соединением

Задана электрическая цепь постоянного тока смешанного соединения,состоящая из 10 резисторов. Значения сопротивления резисторов и номер схемы для соответствующего варианта указаны в таблице №1.

Определить: эквивалентное сопротивление участка цепи Rэкв ; мощность P, напряжение U, силу тока I на входе цепи; токи Ii и напряжения Ui на всех элементах цепи. В ходе решения выполнить несколько проверок полученных результатов по законам Кирхгофа.

Таблица №1

варианта

схемы

P U I R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Вт В А Ом Ом Ом Ом Ом Ом Ом Ом Ом Ом
1 1 ? 150 ? 6 3 8 12 15 12 2 10 15 5
2 2 ? 300 ? 10 40 2 10 20 15 60 7 15 30
3 3 ? 240 ? 20 30 60 20 20 5 25 50 8 36
4 4 ? 360 ? 2 5 3 20 60 30 7 15 60 6
5 5 ? 200 ? 2 13 30 10 20 4 8 3 6,5 60
6 6 ? 300 ? 10 20 60 4 5 15 45 6 2 3
7 7 ? 500 ? 3 15 15 8 7 10 10 10 30 20
8 8 ? 300 ? 20 5 4 8 7 3 15 30 6 10
9 9 ? 600 ? 15 30 15 10 40 10 45 2 9 5
10 10 ? 300 ? 0,2 0,8 2 4 5 6 30 60 2 15
11 11 ? 360 ? 60 12 15 30 15 3 1 60 5 30
12 12 ? 150 ? 5 8 10 20 40 23 25 5 15 35
13 1 ? ? 40 15 30 20 30 20 12 10 5 10 60
14 2 ? ? 40 3 6 8 10 20 15 60 17 10 60
15 3 ? ? 20 10 20 60 15 30 4 30 60 2 60
16 4 ? ? 18 15 5 40 10 20 30 10 15 30 4
17 5 ? ? 100 10 10 20 5 8 8 20 1 1 6
18 6 ? ? 100 6 24 8 40 20 20 10 7,5 15 7,5
19 7 ? ? 50 5 15 15 7 8 5 10 15 6 3
20 8 ? ? 20 20 4 5 1 3 5 30 15 14 6,6
21 9 ? ? 20 6 3 8 9 4,5 10 7 7 4 4
22 10 ? ? 30 1 2 3 4 5 30 60 3 2 4/3
23 11 ? ? 20 6 8 24 6 3 4 5 30 10 60
24 12 ? ? 80 1 2 3 12 12 0,5 5 6 7 2
25 1 ? ? 20 10 15 14 12 15 20 4 7 15 30
26 2 1620 ? ? 6 3 3 2 5 30 15 14 20 12
27 3 2000 ? ? 60 10 20 40 10 1 20 12 5 10
28 4 ? ? 30 5 10 15 15 30 15 10 20 12 3
29 5 3200 ? ? 20 15 10 12 15 20 30 2 5 40
30 6 ? 280 ? 20 4 5 20 40 20 10 12 4 6
31 7 50000 ? ? 22 2 8 5 15 10 20 30 10 40
32 8 1440 ? ? 20 60 10 0,4 0,6 1 15 30 9 4
33 9 ? ? 40 15 30 15 10 40 10 45 2 9 5
34 10 2250 ? ? 2 3 10 10 12 15 20 30 10 8
35 11 ? ? 16 60 12 15 30 15 3 1 60 5 30
36 12 1280 ? ? 5 8 10 20 40 10 15 8 10 12

ЗАДАЧА №2. Однофазные цепи переменного тока.

Неразветвлённая цепь переменного тока, показанная на соответствующем рисунке, содержит активные и реактивные сопротивления, величны которых заданы в таблице №2. Кроме того извесен один из дополнительных параметров. Определить следующие величины, если они не заданы в таблице параметов.

1. полное сопротивление цепи Z;

2. напряжение, приложенное к цепи U;

3. силу тока в цепи I;

4. сдвиг фаз φ;

5. активную P, реактивную Q и полную S мощности, потребляемые цепью;

6. начертить в масштабе векторную диаграмму и пояснить ее построение.

Таблица №2

варианта

схемы

R1 R2 Дополнительный параметр
Ом Ом Ом Ом Ом Ом
1 1 8 4 18 2 I = 10 A
2 2 16 5 6 8 Q= 135 ВАР
3 3 4 9 3 3 U = 20 B
4 4 10 14 18 20 30 UR2 = 28 B
5 5 32 20 20 6 10 I = 4 A
6 6 4 5 6 3 I = 5 A
7 7 8 12 6 P = 72 Вт
8 8 2 6 10 4 U = 20 B
9 9 3 1 4 Q= 125 ВАР
10 10 8 4 2 U = 80 B
11 1 1 2 8 4 S = 1000 ВА
12 2 3 10 12 26 P1 = 48 Вт
13 10 12 22 2 4 P = 72 Вт
14 3 40 50 12 8 QL1 = 48 ВАР
15 4 40 20 20 80 20 QC1 = — 320 ВАР
16 5 32 25 15 8 8 UL1 = 125 B
17 6 8 10 15 9 QC1 = — 320 ВАР
18 7 4 5 9 P = 256 Вт
19 8 10 6 20 8 I = 4 A
20 9 8 4 2 S = 50 ВА
21 10 4 10 3 4 P = 64 Вт
22 1 8 4 6 22 P1 = 32 Вт
23 2 4 3 6 12 S = 500 ВА
24 3 12 16 10 6 UL2 = 160 В
25 4 6 2 10 1 3 P = 200 Вт
26 5 80 10 10 40 40 QL2 = 40 ВАР
27 6 4 10 15 9 Q= 1600 ВАР
28 7 4 5 8 Q= -192 ВАР
29 8 6 2 4 10 Q= -24 ВАР
30 9 16 8 4 P = 64 Вт
31 10 12 4 12 8 U = 100 B
32 1 2 2 4 8 Q1 = -96 ВАР
33 2 8 2 2 10 QC1 = — 20 ВАР
34 3 24 28 35 25 S = 1000 ВА
35 4 30 34 32 50 30 UC1 = 500 В
36 5 40 10 10 20 20 QL2 = 20 ВАР

ЗАДАЧА №3. Трехфазные цепи переменного тока.

Три группы сопротивлений соединили «звездой» с нулевым проводом и включили в трехфазную сеть переменного тока с линейным напряжением Uл ном. Активные сопротивления в фазах А, В и С соответственно равны RA, RB, RC; реактивные – XA, XB, Xc. Характер реактивных сопротивлений указан на схеме цепи (индуктивное или ёмкостное). Линейные токи в нормальном режиме равны IA, IB, IC. Фазы нагрузки потребляют активные мощности PA, PB, PC и реактивные мощности QA, QB, QC. Начертить схему цепи для каждого варианта. Определить величины, отмеченные в таблице №3 прочерками. Начертить в масштабе векторную диаграмму цепи. Из векторной диаграммы определить ток в нулевом проводе.

Таблица №3

Генератор переменного тока.

Итак, генератор — это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток.

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

\alpha = wt + \alpha_0

Здесь \alpha_0 — это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

\alpha = wt

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

\Phi(t) = BScos(\alpha)

Величина магнитного потока, как и угол \alpha, зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

\varepsilon = -\Phi^{\prime}(t) = BSw\medspace sin(\alpha) = BSw\medspace sin(wt)

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы — зависимость тока от времени будет иметь синусоидальный характер:

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: