Закон электромагнитной индукции (закон фарадея)

Применение явления

Значение закона Фарадея трудно недооценить, понимая, в каких целях он используется на практике. Вся электрическая промышленность построена на реализации открытия учёного. Одним из устройств использующего принцип возникновения ЭДС за счёт движения замкнутого проводника в магнитном поле является электрический генератор.

Его работа заключается в том, что если постоянный магнит перемещать относительно контура, то возникнет электродвижущая сила. Соответственно подключив проводник к нагрузке, можно получить ток. А это значит, что механическая энергия превратится в электрическую. При этом различают два принципиально разных механизма работы:

  1. Индуцированный — вращение магнита, вокруг не изменяющего своё положение проводника. В этом случае электрическое поле двигает заряды через проводник.
  2. Двигательный — магнит неподвижен, а проводник вращается. Появляется сила Лоренца, и магнитное поле толкает заряды.

Второе, но не менее важное устройство, электродвигатель. По сути, это генератор работающий «задом наперёд»

На заряд действует магнитная сила, вращающая диск в обратном направлении, определить которое можно по правилу левой руки. Если будут потери небольшие, например, связанные с трением или выделением тепла, то подключённый диск будет вращаться с такой скоростью, чтобы отношение dF / dt сравнялось с разностью потенциалов вызывающего ток.

На использовании ЭДС построена работа и трансформатора. Проходящий по первичным виткам переменный электрический ток приводит к возникновению магнитного поля. Последнее и наводит во вторичной обмотке электродвижущую силу. Если только концы катушки подключить к нагрузке, то через неё сразу же потечёт ток.

Графики зависимости индукционного тока от времени рамка

. одновременно в одну или в противоположные стороны. Укажите, как это можно осуществить.

При раскачивании первой катушки в ней возникает индукционный ток, который проходит по виткам второй катушки, находящейся в магнитном поле, и раскачивает ее. Направление движения второй катушки зависит от направления тока в ней и расположения полюсов магнита.

  • 1
  • 2
  • 3
  • 4
  • 5

Она также будет раскачиваться, но в стороны, противоположные направлению отклонения стрелки первого гальванометра.

  • 1
  • 2
  • 3
  • 4
  • 5

См. рисунок 355.

  • 1
  • 2
  • 3
  • 4
  • 5

При сближении цепей ток направлен от С к D; при удалении — от D к С.

  • 1
  • 2
  • 3
  • 4
  • 5

Не будет, так как не изменяется поток магнитной индукции, пронизывающий рамку.

  • 1
  • 2
  • 3
  • 4
  • 5

. наибольшая и наименьшая ЭДС. Индукцией магнитного поля Земли пренебречь.

ЭДС будет иметь наименьшее значение, когда рамка будет расположена в плоскости, проходящей через прямолинейный провод. Наибольшая ЭДС будет возникать тогда, когда рамка будет перпендикулярна к этой плоскости.

  • 1
  • 2
  • 3
  • 4
  • 5

Нет. Магнитное поле индукционного тока противодействует перемещению проводника. Энергия сторонних сил, затраченная на выполнение работы по преодолению этого сопротивления, и обращается в энергию электрического тока. Причины размагничивания постоянных магнитов, например, в электрических машинах — тепловое движение молекул и механические толчки.

  • 1
  • 2
  • 3
  • 4
  • 5

Ток будет направлен от ртути к оси диска.

  • 1
  • 2
  • 3
  • 4
  • 5

. В каком месте диска — в центре или на окружности — потенциал будет больше?

В северном полушарии — на окружности, в южном — в центре.

  • 1
  • 2
  • 3
  • 4
  • 5

От А к В и от D к С.

  • 1
  • 2
  • 3
  • 4
  • 5

ЭДС будет возникать, так как при внесении провода в пространство между полюсами магнита будет изменяться магнитный поток, пронизывающий площадь контура.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

Магнитный поток не меняется, он остается равным нулю. В кольце индуцируется ток, магнитный поток которого таков, что в сумме с потоком индукции самого магнита через кольцо дает нуль.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

За счет какой энергии происходит нагревание цилиндра и воды?

Нагревание воды вызвано токами Фуко, возникающими в стенках цилиндра при его вращении в магнитном поле. Действие поля на стенки цилиндра тормозит его вращение. При наличии поля необходимо приложить к цилиндру больший вращающий момент, т. е. затратить большую энергию, чем при отсутствии поля. Эта дополнительная энергия и расходуется на нагревание цилиндра и воды.

  • 1
  • 2
  • 3
  • 4
  • 5

но это опасно для стеклянного баллона лампы. Каким способом можно нагреть электроды лампы, не нагревая баллона?

Токами высокой частоты.

  • 1
  • 2
  • 3
  • 4
  • 5

Качающаяся стрелка создает переменное магнитное поле, индуцирующее в медном футляре вихревые токи, направление которых согласно правилу Ленца таково, что они препятствуют движению стрелки.

  • 1
  • 2
  • 3
  • 4
  • 5

При замене медного диска стеклянным или деревянным магнит оставался неподвижным. Магнит также оставался неподвижным, когда в медном диске были сделаны разрезы по направлению его радиусов. Когда разрезы были запаяны, магнит опять приходил в движение. Объясните эти опыты.

При вращении диска в нем возникали вихревые токи, направленные так, что поле магнита тормозит вращение диска. По третьему закону Ньютона равная и противоположно направленная сила действует на магнит и заставляет его вращаться вслед за диском. Если в диске сделать радиальные разрезы, то в нем индуцируются небольшие вихревые токи, оказывающие слабое действие на магнит.

  • 1
  • 2
  • 3
  • 4
  • 5

Энергия колебаний в значительной степени расходуется на возбуждение вихревых токов в алюминиевом каркасе катушки и в цепи самой замкнутой катушки прибора.

  • 1
  • 2
  • 3
  • 4
  • 5

. от времени, чтобы прибор отвечал своему назначению?

Силы, действующие на металлические опилки, возникают вследствие появления в опилках индукционных токов при изменении магнитного поля электромагнита. При нарастании тока в электромагните опилки в соответствии с правилом Ленца будут выталкиваться из поля, а при убывании тока — притягиваться. Эти силы пропорциональны скорости изменения магнитного поля и соответственно тока. Поэтому ток в электромагните должен медленно нарастать, а затем очень быстро падать до нуля. Примерная зависимость силы тока от времени изображена на рисунке 356.

Источник



Электролиз. Законы Фарадея

Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты.

При электролизе на электродах непрерывно протекают окислительно-восстановительные реакции. На катоде (К(-)) происходит процесс восстановления, на аноде (А(+)) – процесс окисления. Продукты этих реакций или откладываются на электродах, или вступают во вторичные реакции (взаимодействуют между собой, с молекулами растворителя или с веществом электрода), или накапливаются в растворе у электродов. Течение первичных анодных и катодных реакций подчиняется законам Фарадея.

Первый закон Фарадея: масса вещества m, выделяемая на электроде электрическим током, пропорциональная количеству электричества Q, прошедшему через электролит:

m = kQ, но Q =It (9.16)

где I – сила тока, А; t – время пропускание тока, с.

m = kIt (9.17)

k – коэффициент пропорциональности, равный количеству вещества, выделяемого при прохождении одного кулона (Кл) электричества (электрохимический эквивалент).

Второй закон Фарадея: массы различных веществ, выделенных одним и тем же количеством электричества, пропорциональных их химическим эквивалентам (Мэ):

Для выделения 1 грамма эквивалента вещества требуется пропустить через электролит одно и тоже количество электричества, равное приблизительно 96500 Кл (число Фарадея). Следовательно:

Подставив последнее уравнение в (9.17), получим формулу, объединяющую оба закона Фарадея.

(9.18)

Соотношение (9.18) используют в расчетах процессов при электролизе. При практическом проведении электролиза всегда некоторая часть электрической энергии затрачивается на побочные процессы

Важной характеристикой рентабельности установки для проведения электролиза (электролизера) является выход по току (h, %):

h = (9.19)

где mпр – масса фактически выделенного вещества; mтеор – масса вещества, которая должна была выделиться в соответствии с законом Фарадея.

На процесс электролиза существенно влияет плотность тока, то есть сила тока, приходящаяся на единицу рабочей поверхности электрода.

Рассмотрим процессы, протекающие на катоде и аноде. Если электролиз идет в расплаве соли, то на катоде выделяется металл, а на аноде газ аниона.

Например, электролиз расплава хлорида натрия приводит к восстановлению ионов Na+ до металлического натрия на катоде (отрицательном электроде)

Na+ + 1e Na

и окислению хлорид ионов Cl– до газообразного хлора на аноде (положительном электроде)

Cl– – e 1/2 Cl2.

Суммарная реакция:

NaClNa + 1/2 Cl2.

Если электролиз идет в растворе соли, то помимо катиона металла и аниона в растворе находятся ионы H+ и OH+:

H2O D H++OH-.

При наличии нескольких видов ионов или недиссоциированных молекул электрохимически активных веществ возможно протекание нескольких электродных реакций. На катоде, прежде всего, протекает реакция с наиболее положительным потенциалом. Поэтому при катодном восстановлении возможно три случая:

Катионы металлов, стоящие в ряду напряжения от Li+ до Al3+ включительно не восстанавливаются на катоде, вместо них выделяется водород:

2Н2О + 2e Н2 + 2OH-;

Катионы металлов, находящиеся в ряду напряжения от Al3+ до H+ (включительно) восстанавливаются одновременно с молекулами воды, что связано с более высокой поляризацией (перенапряжением) при выделении водорода, чем поляризацией (перенапряжением) разряда многих металлов:

Меn+ + ne Ме°

2Н2О + 2e Н2 + 2ОН-

Катионы металлов, стоящие в ряду напряжения после водорода полностью восстанавливаются на катоде:

Меn+ + ne Ме°.

На аноде в первую очередь реагируют наиболее сильные восстановители – вещества, имеющие наиболее отрицательные потенциалы.

На нерастворимом аноде (уголь, графит, платина, иридий) анионы кислородсодержащих кислот не окисляются, а окисляется вода с образованием кислорода:

2Н2О – 4e 4Н+ + О2.

Анионы бескислородных кислот (Cl-, I-, Br-, S2- и т.д.) окисляются до простых веществ (Cl2, I2, Br2, S и т. д.) при высокой плотности тока. При малой плотности тока выделяется только кислород, а при выравнивании потенциала и протекают обе реакции.

На растворимом аноде идет процесс растворения самого анода, например, Сu +- 2e Cu2+.

Электролиз применяют в:

1) металлургии для получения меди, цинка, кобальта, марганца и других металлов;

2) в химической промышленности электролизом получают газообразный хлор, водород, кислород, щелочи, окислители (пероксид водорода, перманганат калия, хлораты и другие);

3) получение гальванопокрытий: никелирование, меднение, цинкование, хромирование;

4) электрохимическая анодная обработка металлов и сплавов для придания изделиям определенной формы.

Магнитное поле. Магнитная индукция. Правила буравчика и правой руки. Сила Ампера. Правило левой руки

Подробности
Просмотров: 574

— это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства стационарного магнитного поля

Постоянное (или стационарное) магнитное поле — это магнитное поле, неизменяющееся во времени .

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое, т.е. не имеет источника.

Магнитные силы

— это силы, с которыми проводники с током действуют друг на друга.

………………

Магнитная индукция

— это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

Линии магнитной индукции

— это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле — это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Магнитное поле прямого проводника с током:

или

где

— направление тока в проводнике на нас перпендикулярно плоскости листа,

— направление тока в проводнике от нас перпендикулярно плоскости листа.

Магнитное поле соленоида:

Магнитное поле полосового магнита:

— аналогично магнитному полю соленоида.

Свойства линий магнитной индукции

— имеют направление;
— непрерывны;
-замкнуты (т.е. магнитное поле является вихревым);
— не пересекаются;
— по их густоте судят о величине магнитной индукции.

Направление линий магнитной индукции

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки

( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

Сила Ампера

— это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

Примеры:

или

Действие магнитного поля на рамку с током

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током.
Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

Следующая страница «Действие магнитного поля на движущийся заряд.Магнитные свойства вещества»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера —
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества —
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца —
ЭДС электромагнитной индукции. Вихревое электрическое поле —
ЭДС индукции в движущихся проводниках —
Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Джеймс Клерк Максвелл математически описал основные законы электричества и магнетизма

Джеймс Клерк Максвелл

Математическая формулировка электромагнитной индукции была разработана немецким физиком и математиком Францем Эрнстом Нейманом (1798-1895) в 1945 году. Эти открытия проложили путь к фундаментальной теоретической композиции, выполненной Джеймсом Клерком Максвеллом (1831-1879), начиная с “силовых линий Фарадея”. Однако работа Максвелла изначально вызывала недоверие у большинства физиков и игнорировалась инженерами.

Только к концу XIX века, после памятного эксперимента с электромагнитными волнами, проведенного Генрихом Герцем в 1887 году, теория Максвелла стала общепринятой и позволила обратиться как к физике, так и к технике.

Линии магнитного поля и свойства

Полезно вспомнить общие сведения о магнитном поле. Оно образуется вокруг проводника, по которому двигаются электрические заряды или протекает электрический ток. В этом случае образуется сразу два вида поля — электрическое и магнитное поля. Таким образом, вокруг проводника/провода с током будет наблюдаться и электрическое и одновременно магнитное поле, т.к. они оба возникают при условии протекания электрического тока. Появившись, магнитное поле имеет свойство воздействовать на другие движущиеся электрические заряды, а точнее на сторонний электрический ток, например, протекающий в другом проводнике поблизости от первого. Такое воздействие магнитного поля материально и определяется степенью — оно может быть сильнее или слабее. В автомобиле, для примера, такое взаимодействие можно наблюдать на примере проводки, которая способна оказывать ощутимое влияние друг на друга и создавать наводки/помехи, отчётливо слышимые в динамиках.

Магнитное поле с его сферической формой образуется линиями, которые можно представить вокруг объекта под напряжением и даже увидеть при помощи мелкой металлической крошки. Таких магнитных линий вокруг объекта будет большое количество, вместе они образуют целый спектр. Направление магнитных линий определяется магнитной стрелкой. Магнитные линии всегда замкнуты, поэтому у них нет понятия «начало линии» или «конец линии». Эти линии никогда не пересекаются, не завиваются и не взаимодействуют друг с другом. Магнитные линии в совокупности формируют форму магнитного поля и по их «кучности» в какой-то точке пространства можно судить о силе магнитного воздействия в этом месте.
Если линии располагаются параллельно друг относительно друга и в целом упорядоченно, если их плотность более менее равномерна, то такие линии образуют однородное магнитное поле. Наоборот, если линии искривляются в пространстве и разрежены друг относительно друга, то они своей совокупностью образуют неоднородное магнитное поле. Эти два вида магнитного поля отличаются друг от друга во многом:

Магнитная сила воздействия неоднородного поля различна в той или иной точке пространства, тогда как эта сила одинакова по модулю и направлению у однородного поля.

По взаиморасположению линий в пространстве: у однородного поля линии параллельны друг другу и кучность их одинакова; у неоднородного поля линии искривляются и кучность их различна.

Неоднородное поле находится вне магнита или проводника с электрическим током, тогда как однородное поле образуется внутри магнита.

Однородные магнитные поля чаще всего наблюдаются внутри катушки с большим количеством витков (например в катушке динамика) или внутри обычного полосового магнита, тогда как неоднородное магнитное поле чаще всего располагается вне магнита, например вокруг силового кабеля питания.

ЭДС индукции. Закон электромагнитной индукции

Выше рассмотренные опыты показали, что в замкнутом контуре возникает индукционный ток при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром. Как известно, ток в проводнике возникает в том случае, если на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного заряда вдоль замкнутого проводника называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы (природу их выясним ниже: ЭДС индукции в движущихся проводниках), действие которых характеризуется ЭДС, называемой ЭДС индукции

Как показывает опыт, значение индукционного тока (а значит, и \(~\varepsilon_i\)) не зависит от причины изменения магнитного потока (изменяется ли площадь, ограниченная контуром, или его ориентация в пространстве, изменяется ли индукция магнитного поля при перемещении его источников или за счет изменения среды и т.д.). Существенное

значение имеет лишьскорость изменения магнитного потока \(~\frac {\Delta \Phi}{\Delta t}\) (так, стрелка гальванометра в опытах Фарадея отклоняется тем больше, чем быстрее вдвигается магнит в катушку). \(~ \mathcal h \varepsilon_i \mathcal i = -\frac {\Delta \Phi}{\Delta t}. \qquad (1)\) Эта формула выражает закон Фарадея для электромагнитной индукции:

среднее значение ЭДС индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограничен ную контуром. Мгновенное значение ЭДС индукции равно взятой с противоположным знаком первой производной от магнитного потока по времени, т.е.

\(~\mathcal h \varepsilon_i \mathcal i = {\Phi}'(t)\).

Советуем изучить Варианты подсветки потолка в помещениях

Знак «-» учитывает правило Ленца, согласно которому при увеличении магнитного потока \(~(\frac {\Delta \Phi}{\Delta t} > 0)\) ЭДС индукции отрицательная \(~(\varepsilon_i 0)\).

Сила индукционного тока в замкнутом контуре рассчитывается по закону Ома\ где R

— сопротивление контура.

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. В соответствии с законом электромагнитной индукции любые изменения магнитного потока, пронизывающего проводящее тело, сопровождаются возникновением в нем индукционных токов. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми (а также токами Фуко)

. Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Токи Фуко можно обнаружить на опыте с маятником (проводящей пластиной), колеблющемся в зазоре между полюсами электромагнита. До включения маятник совершает практически незатухающие колебания. При пропускании тока через катушку электромагнита маятник испытывает сильное торможение и очень быстро останавливается. Торможение маятника объясняется действием магнитного поля на индукционные токи, возникающие в пластине при ее движении в магнитном поле. Если в пластине сделать разрезы, то вихревые токи ослабляются и торможение почти отсутствует. Этот факт торможения используется для успокоения подвижных частей различных приборов.

Токи Фуко вызывают нагревание проводников (якоря генераторов и сердечников трансформаторов), выделяемая токами Фуко теплота используется в индукционных металлургических печах и в других случаях.

По закону Фарадея (1) определяется ЭДС индукции, возникающая и в движущемся проводнике, и в неподвижном (см. опыты, описанные в разделе Электромагнитная индукция). Но механизм происхождения ЭДС индукции в этих случаях различен.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: