Введение
В XIX веке была обнаружена некая связь между магнетизмом и электричеством и в связи с этим возникло представление о магнитном поле. По современным представлениям, проводники с током оказывают силовое действие друг на друга через магнитные поля, окружающие их.Источниками этих полей являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, которое окружает проводники с током так, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле.Магнитное поле представляет собой некую форму материи, посредством которой осуществляется связь между телами, которые обладают магнитным моментом или движущимися заряженными частицами. Термин «магнитное поле» вводит М. Фарадей в 1845г. Важным доказательством реального существования электрического и магнитного полей является факт существования электромагнитных волн. Электрическое поле, как и магнитное, является частным проявлением единого электромагнитного поля.Главной отличительной чертой электрического поля является способность воздействовать на неподвижные заряды. Основное свойство магнитного поля заключается в том, что оно действует на движущиеся заряды (электрический ток).Неподвижные заряды не создают магнитного поля. Только постоянные магниты и движущиеся заряды могут создавать его. При изучении взаимодействия постоянных магнитов было установлено, чтоони имеют два полюса: северный и южный; одноименные полюсы отталкиваются друг от друга, а разноименные притягиваются.Если отдельные тела можно зарядить отрицательно или положительно, в связи с существованием элементарного электрического заряда, то никогда нельзя отделить северный полюс магнита от южного. Таким образом, нет оснований считать, что в природе существуют какие-то отдельные магнитные заряды.Данная мысль была высказана Ампером в гипотезе об элементарных электрических токах. Согласно этой гипотезе, внутри молекул и атомов вещества циркулируют элементарные электрические токи. И если данные токи расположены беспорядочно по отношению друг к другу, то их действие взаимно компенсируется и никакими магнитными свойствами тело не будет обладать. В намагниченном состоянии элементарные токи ориентированы определенным образом. Следовательно, магнитные свойства любого тела объясняются замкнутыми электрическими токами внутри него, таким образом магнитное взаимодействие – это взаимодействие токов.Закон Ампера применяется для определения силы взаимодействия двух токов, а Силой Лоренца называют ту силу, которая действует со стороны электромагнитного поля на движущийся электрический заряд. Об этом более подробно рассмотрим в данном реферате.Актуальность:Закон Ампера и Лоренца — одни из важнейших и полезнейших законов в электротехнике, без которых немыслим научно-технический прогресс.Цель: Исследование Силы Ампера и силы Лоренца, Движение заряженных частиц в магнитном поле.Задачи:1. Изучить общие сведения о Силе Ампера и силе Лоренца.2. Раскрыть основные условия движения заряженных частиц в магнитном поле3. Описать возможности силы Ампера и силы Лоренца.
Сила упругости
При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название «сила упругости». Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.
Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие – их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее «x». Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).
Математическая модель упругого взаимодействия описывается законом Гука.
Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:
Fy = -kx (в векторной записи).
Знак «-» говорит о противоположности направления деформации и силы.
В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид Fy = kx, используется только при упругих деформациях.
Направление силы Лоренца, действующей на положительно заряженную частицу .
Задача 1. (Сила Лоренца)
Пылинка, имеющая заряд \(q=10^{-6} \ Кл\) движется в магнитном поле с индукцией
\(B=20 \ Тл\) . Скорость пылинки перпендикулярна линиям магнитной индукции и равна
\(100 \ м/с \)
Вычислить значение силы Лоренца, действующей на пылинку со стороны магнитного поля.
Дать ответ в миллиньютонах.
Ответ: \( F_л=2 \ мН \)
Дано: \( v=100 \ м/с \) \( B=20 \ Тл \) \( q=10^{-6} \ Кл \)
\(B=20 \ Тл \) \( \alpha=90^0\)
\(F_л-?\)
\( F_л=Bqv \cdot sin \ \alpha \)
\( F_л=20 \ Тл \cdot 10^{-6} \ Кл \cdot 100 \ м/с \cdot sin \ 90^0 =2 \cdot 10^{-3} \ Н \)
\( 2 \cdot 10^{-3} \ Н = 2 \ мН \) Ответ: \( F_л=2 \ мН \)
ПОЗЖЕ
Задача 2.
Шарик с зарядом \(q=100 \ мкКл\) влетает в магнитное поле с
индукцией \(B=100 \ Тл\) со скоростью \(v=30 \ м/с .\)
Угол между вектором магнитной индукции \( \vec{B} \) и вектором скорости частицы
\( \vec{v} \) составляет \( \alpha=30^0 . \)
Найти значение силы Лоренца, действующей на шарик со стороны поля.
Ответ: \( F_л= 0,15 Н \)
Дано: \(q=100 \ мкКл \) \(B=100 \ Тл \)
\(v=30 \ м/с \) \( \alpha=30^0 \)
\(F_л-?\)
СИ
\(q=10^{-4} Кл \)
\( F_л=Bqv \cdot sin \ \alpha \)
\( F_л=100 \ Тл \cdot 10^{-4} \ Кл \cdot 30 \ м/с \cdot sin \ 30^0 =0,15 \ Н \)
Ответ: \( F_л= 0,15 Н \)
позже
Задача 3. (Сила Лоренца)
Электрон движется в магнитном поле с индукцией
\(B=1 \ Тл\) перпендикулярно линиям магнитного поля со скоростью \(v=10^8 \ м/с . \)
Вычислить значение силы Лоренца, действующей на электрон со стороны магнитного поля.
Заряд электрона \( q=1,6 \cdot 10^{-19} \ Кл . \)
Дать ответ в пиконьютонах.
1 пН \( = 10^{-12} \ Н . \)
Ответ: \( F_л= 16 \ \) пН
Дано: \( v=10^8 \ м/с\) \( B=1 \ Тл \) \( q=10^{-6} \ Кл \)
\( \alpha=90^0\)
\(F_л-?\)
\( F_л=Bqv \cdot sin \ \alpha \)
\( F_л=1 \ Тл \cdot 1,6 \cdot 10^{-19} \ Кл \cdot 10^8 \ м/с \cdot sin \ 90^0 =
1,6 \cdot 10^{-11} \ Н \)
\( 1,6 \cdot 10^{-11} \ Н = 16 \ \) пН Ответ: \( F_л= 16 \ \) пН
ПОЗЖЕ
Задача 4. (Сила Лоренца)
С какой скоростью двигался протон в магнитном поле с индукцией \(B=10^{-2} \ Тл\) перпендикулярно линиям поля,
если на него действовала сила Лоренца \(F_л=3,2 \cdot 10^{-17 } \ Н \ ? \)
Заряд протона \( q=1,6 \cdot 10^{-19} \ Кл . \)
Дать ответ в километрах в секунду.
Ответ: \( v= 20 \ км/с \)
Дано: \( B=10^{-2} \ Тл \) \( q=1,6 \cdot 10^{-19} \ Кл \)
\(F_л=3,2 \cdot 10^{-17 } \ Н \) \( \alpha=90^0\)
\(v-?\)
\( F_л=Bqv \cdot sin \ \alpha \)
\(v=\dfrac{F_л}{Bq\cdot sin \ \alpha} \)
\(v=\dfrac{3,2 \cdot 10^{-17 } \ Н }{10^{-2} \ Тл \cdot 1,6 \cdot 10^{-19} \ Кл \cdot sin \ 90^0} = 2 \cdot 10^{4 } \ м/с \)
\( 2 \cdot 10^{4 } \ м/с=20 \ км/с \) Ответ: \( v= 20 \ км/с \)
ПОЗЖЕ
Задача 5. (Сила Лоренца)
Альфа-частица движется в магнитном поле с индукцией \(B=10^{-3} \ Тл\) перпендикулярно линиям поля, при этом на нее действует сила Лоренца \(F_л=6,4 \cdot 10^{-15 } \ Н . \)
Вычислить скорость альфа-частицы, если ее заряд \(q=3,2 \cdot 10^{-19} \ Кл . \)
Дать ответ в километрах в секунду.
Ответ: \( v= 20000 \ км/с \)
Дано: \( B=10^{-3} \ Тл \) \( q=3,2 \cdot 10^{-19} \ Кл \)
\(F_л=6,4 \cdot 10^{-15 } \ Н \) \( \alpha=90^0\)
\(v-?\)
\( F_л=Bqv \cdot sin \ \alpha \)
\(v=\dfrac{F_л}{Bq\cdot sin \ \alpha} \)
\(v=\dfrac{6,4 \cdot 10^{-15 } \ Н }{10^{-3} \ Тл \cdot 3,2 \cdot 10^{-19} \ Кл \cdot sin \ 90^0} = 2 \cdot 10^{7 } \ м/с \)
\( 2 \cdot 10^{7 } \ м/с=20000 \ км/с \) Ответ: \( v= 20000 \ км/с \)
ПОЗЖЕ
Задача 8. (Сила Лоренца)
Протон влетает в магнитное поле со скоростью \(v= 10^{5} \ м/с \) перпендикулярно линиям индукции,
после чего он движется по окружности.Найти радиус этой окружности, если индукция поля
\(B=0,01 \ Тл . \)
Заряд протона \(q=1,6 \cdot 10^{-19} \ Кл \)
Масса протона \(m=1,6 \cdot 10^{-27} \ кг \)
Ответ: \( R=0,1 \ м \)
Запишем формулу второго закона Ньютона для этой задачи:
\( F_{л}=ma_{цс} \)
\( F_{л} \) -сила Лоренца
\( m \) — масса протона
\( a_{цс} \) -центростремительное ускорение протона
Дано: \( v= 10^{5} \ м/с \) \( B=0,01 \ Тл \) \( q=1,6 \cdot 10^{-19} \ Кл \)
\( \alpha=90^0\) \(m=1,6 \cdot 10^{-27} \ кг \)
\(R-?\)
\( Bqv \cdot sin \ \alpha = m \dfrac{v^2}{R} \)
\( R Bqv \cdot sin \ \alpha = m v^2 \)
\( R= \dfrac{mv^2}{ Bqv \cdot sin \ \alpha} \)
\( R= \dfrac{mv}{ Bq \cdot sin \ \alpha} \)
\( R= \dfrac{1,6 \cdot 10^{-27} \ кг \cdot 10^{5} \ м/с }{ 0,01 \ Тл \cdot 1,6 \cdot 10^{-19} \ Кл \cdot sin \ 90^0} =0,1 \ м \) Ответ: \( R=0,1 \ м \)
ПОЗЖЕ
Немного истории
Первые попытки описать электромагнитную силу были сделаны еще в XVIII веке. Ученые Генри Кавендиш и Тобиас Майер высказали предположение, что сила на магнитных полюсах и электрически заряженных объектах подчиняется закону обратных квадратов. Однако экспериментальное доказательство этого факта не было полным и убедительным. Только в 1784 году Шарль Августин де Кулон при помощи своего торсионного баланса смог окончательно доказать это предположение.
В 1820 году физиком Эрстедом был открыт факт, что на магнитную стрелку компаса действует ток вольта, а Андре-Мари Ампер в этом же году смог разработать формулу угловой зависимости между двумя токовыми элементами. По сути, эти открытия стали фундаментом современной концепции электрических и магнитных полей. Сама же концепция получила свое дальнейшее развитие в теориях Майкла Фарадея, особенно в его представлении о силовых линиях. Лорд Кельвин и Джеймс Максвелл дополнили теории Фарадея подробным математическим описанием. В частности Максвеллом было создано так званное, «уравнение поля Максвелла» – представляющее собой систему дифференциальных и интегральных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.
Джей Джей Томпсон был первым физиком, кто попытался вывести из уравнения поля Максвелла электромагнитную силу, которые действует на движущийся заряженный объект. В 1881 году он опубликовал свою формулу F = q/2 v x B. Но из-за некоторых просчетов и неполного описания тока смещения она оказалась не совсем правильной.
И вот, наконец, в 1895 году голландский ученый Хендрик Лоренц вывел правильную формулу, которая используется и поныне, а также носит его имя, как и та сила, что действует на летящую частицу в магнитном поле, отныне называется «силой Лоренца».
Хендрик Лоренц.
Электромагнитная индукция, магнитный поток
Под термином – магнитная индукция – понимают физическое свойство магнитного поля. Данная величина векторная, для ее обозначения используют символ В. Индукция характеризует силу, влияющую на заряженную частицу, которая перемещается в магнитном поле
Важно помнить, что сила, как и направление движения электрона перпендикулярны друг к другу
Индукция проявляется, когда магнит перемещается в катушке, а также появляется ток. Следовательно, магнитный поток пропорционально увеличивается.
Индукцию объясняют так – структура металла катушки кристаллическая, здесь находятся электрические заряды. При отсутствии влияния магнита на катушку эти заряды не двигаются. Когда она попадает в магнитное поле, появляется скорость заряда, поскольку электроны начинают двигаться. В проводнике формируется ток, его сила определяется параметрами магнита, проводника.
Полезно знать! Если проводник окружает магнитное поле, электроны сдвигаются од определенным углом, размещаются параллельно силовых линий.
Действие магнитного поля на движущийся заряд. Сила Лоренца
- Подробности
- Просмотров: 932
«Физика — 11 класс»
Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?
1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.
Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:
Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α,
а сила тока в проводнике равна I = qnvS
где
q — заряд частиц
n — концентрация частиц (т.е. число зарядов в единице объема)
v — скорость движения частиц
S — поперечное сечение проводника.
тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца, равная:
где α — угол между вектором скорости и вектором магнитной индукции.
Сила Лоренца перпендикулярна векторам и .
2.Направление силы Лоренца
Направление силы Лоренца определяется с помощью того же правила левой руки, что и направление силы Ампера:
Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца Fл.
3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна:
= эл + л
где сила, с которой электрическое поле действует на заряд q, равна Fэл = q.
4.Cила Лоренца не совершает работы, т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.
5.Движение заряженной частицы в однородном магнитном поле
однородное
Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, чтоВ однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r.
Согласно второму закону Ньютона
Тогда радиус окружности, по которой движется частица, равен:
Время, за которое частица делает полный оборот (период обращения), равно:
6.Использование действия магнитного поля на движущийся заряд.
Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.
Сила Лоренца используется в циклотроне — ускорителе заряженных частиц для получения частиц с большими энергиями.
На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..
Следующая страница «Магнитные свойства вещества»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»
Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика
Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы
Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера
Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.
Анализ задачи:
Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.
Решение:
В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.
Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.
1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (о).
2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.
3) Приходим к выводу: проводник А привлекается к проводнику В.
Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.
1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (о).
2) Определим направление силы Ампера, действующая на проводник В.
3) Приходим к выводу: проводник В привлекается к проводнику А.
Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.
Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?
Анализ задачи:
Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:
- сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх)
- значение силы Ампера равна значению силы тяжести FA = Fтяж
Направление тока определим, воспользовавшись правилом левой руки.
Решение:
Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.
Учитываем, что FA = Fтяж. FA= BIlsinα, где sin α = 1; Fтяж = mg
Из последнего выражения найдем силу тока: I = mg/Bl
Проверим единицу, найдем значение искомой величины.
Ответ: I = 8 А; Ток в направлении от нас.
Подводим итоги
Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
Правило правой руки
Прежде чем разобраться в правиле правой руки, необходимо уяснить, что любая сила и сила Лоренца не исключение – вектор, а это означает, что у данного параметра есть два значения – величина и указание. Если знать ориентацию множителей, определить направление векторного произведения не составит труда. Для этого потребуется правило левой или правой руки. Данное правило известно под название правила Буравчика или винта. Оно применимо не только к определению указания вектора силы Лоренца, но и к определению ориентации любых других векторных произведений.
Для лучшего понимания правил:
- ионы с отрицательным зарядом, а также электроны всегда направлены от катода к аноду;
- ионы с положительным зарядом, а также протоны направлены от анода к катоду;
- электрический ток движется в направлении, которое противоположно направлению электронов.
Для определения ориентации искомой силы Лоренца потребуется поставить правую ладонь таким образом, чтобы ладонь и направление тока были направлены параллельно. В этом случае вращение буравчика или в данном конкретном примере большого пальца укажет сторону вектора индукции.
Если объяснить простыми словами, правой рукой необходимо вкручивать штопор.
Важно! Направление, а также угол, в котором заряженная частица отклонится от траектории под влиянием магнитного поля, определяется зарядом частицы
Полезные сведения и советы
- Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
- По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
- При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.
Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.
Применение силы Лоренца в технике
Наиболее масштабно сила Лоренц представлена в магнитном поле Земли. Наша планета представляет собой магнит. Соответственно, заряженные частицы, расположенные у северного и южного магнитных полюсов движутся по спирали, сталкиваются с атомами, которые находятся в верхних слоях атмосферы. Сейчас мы описали механизм появления северного сияния. Однако есть и другие, частные случаи применения силы Лоренца.
Электрический генератор
Когда ученые доказали, что на проводник с током действует магнитное поле, данное открытие решили применить для того, чтобы заставить двигаться проводник, расположенный в магнитном поле. Таким образом, магнетизм удалось трансформировать в механическое движение, соответственно, создать двигатель.
Упрощенная модель механизма состоит из статора (неподвижная часть и закрепленные магниты), внутри которого вращается ротор (рамка, выполненная из материала-проводника). Для подведения тока к рамке ее подсоединяют к клеммам посредством контактов. Теперь модель двигателя подключают к источнику электроэнергии, в результате рамка вращается.
Важно! В двигателях, а также генераторах именно сила Лоренца заставляет ротор двигаться под влиянием электромагнитного поля, статора
Спектрограф
Принцип функционирования прибора такой – источник заряженных частиц помещается в вакуумную камеру, так исключается вероятность действия воздуха на заряженные частицы. Внутри прибора искусственно формируется электрическое поле, под действием которого частицы с зарядом ускоряются, проходят по дуге и ударяются о фотопластину, на ней остаются характерные следы. Радиус траектории меняется в зависимости от удельного заряда. Радиус можно измерять, а затем вычислить массу заряженной частицы.
Интересный факт! Спектрографы используются для изучения состава грунта с Луны.
Кинескоп
До недавнего времени кинескопом был оснащен каждый телевизор, а при отсутствии силы Лоренца, техника не работала бы. Рассмотрим принцип действия кинескопа – это вакуумный баллон, внутри которого расположен источник электронов. Катушки формируют магнитное поле, именно оно управляет электронным лучом. Экран покрыт особым веществом, которое светится, когда на него действуют электроны. Траекторией электронов управляет магнитное поле, а скоростью управляет электрическое поле. Таким образом, если направлять заряженные частицы в конкретные точки экрана, он будет светиться в соответствии с изображением.
Полезно знать! Поднесите магнит к экрану, и вы увидите, как исказится изображение, так как изменится траектория заряженных частиц, ведь на них начнет действовать магнитное поле магнита.
Циклоторон
В данном приборе используется зависимость частоты вращения частицы с зарядом от скорости передвижения в магнитном поле. Основная сфера применения циклотрона – разгон частиц до максимальных скоростей.
Прибор представляет собой два полуцилиндра полые внутри, визуально напоминающие букву D. Их устанавливают прямыми гранями друг к другу и помещают в магнитное поле. Между гранями появляется электрическое поле, его частота аналогична частоте вращения заряженных частиц. В один период вращения каждая частица дважды попадает под влияние электрического поля, при этом скорость движения увеличивается и в определенный момент, когда скорость достигает максимума, частица вылетает через отверстие.
Магнетрон
Этим прибором комплектуют каждую микроволновую печь, здесь также используется сила Лоренца для формирования СВЧ-поля. Это поле разогревает печь изнутри. Для регулирования траектории заряженных частиц внутри установлены магниты.
Задачи по теме «сила Лоренца»
Даже если вы не новичок, прежде чем решать задачи, прочтите общую памятку и на всякий случай держите под рукой полезные формулы.
Задача на силу Лоренца №1
Условие
Электрон с энергией 300 эВ движется перпендикулярно линиям индукции однородного магнитного поля напряженностью 465 А/м. Определить силу Лоренца, скорость и радиус траектории электрона.
Решение
Скорость электрона можно найти из формулы кинетической энергии:
E к = m · v 2 2 v = 2 E к m
Сила Лоренца является центростремительной силой, значит, по второму закону Ньютона, можно записать:
Магнитная индукция равна напряженности, умноженной на магнитную постоянную. Подставив ранее найденное выражение для скорости в формулу для радиуса и силы Лоренца, запишем:
R = m 2 E к т q μ 0 H = 2 E к т q μ 0 H F л = q 2 E к т μ 0 H
Теперь осталось только подставить значения и вычислить:
v = 2 · 4 , 8 · 10 — 16 9 , 1 · 10 — 31 = 3 , 25 · 10 7 м с F л = 4 · 3 , 14 · 10 — 7 · 465 · 1 , 6 · 10 — 19 · 3 , 25 · 10 7 = 3 · 10 — 15 Н R = 2 · 4 , 8 · 10 — 16 · 9 , 1 · 10 — 31 4 · 3 , 14 · 10 — 7 · 465 · 1 , 6 · 10 — 19 = 0 , 32 м
Ответ: v = 3 , 25 · 10 7 м с ; F л = 3 · 10 — 15 Н ; R = 0 , 32 м .
Задача на силу Лоренца №2
Условие
Альфа-частица влетает в магнитное поле с индукцией 1 Тл перпендинулярно силовым линиям. Найти момент импульса частицы относительно центра окружности, по которой она будет двигаться.
Решение
Когда частица влетает в поле перпендикулярно силовым линиям, на нее начинает действовать сила Лоренца, которая выполняет роль центростремительной силы. Радиус окружности, по которой будет двигаться частица:
R = m v Q B m = 6 , 65 · 10 — 27 к г — м а с с а а л ь ф а ч а с т и ц ы Q = 2 e = 3 , 2 · 10 — 19 К л — з а р я д а л ь ф а ч а с т и ц ы
Момент импульса частицы относительно центра окружности найдем по формуле:
L = m v R = m 2 v 2 Q B = 6 , 65 · 10 — 27 2 · 0 , 35 · 10 7 2 3 , 2 · 10 — 19 · 1 = 5 , 42 · 10 — 21 к г · м 2 с
Ответ: 5 , 42 · 10 — 21 к г · м 2 с .
Задача на силу Лоренца №3
Условие
В однородном магнитном поле с индукцией В = 0,5 Тл вращается с частотой n = 10 с-1 стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определите разность потенциалов U на концах стержня.
Решение
Рассмотрим физическую суть процессов, проходящих в стержне. Когда стержень движется в магнитном поле, в нем возникает ЭДС индукции, которая обусловлена действием силы Лоренца на заряды стержня.
Под действием этой силы в стержне происходит разделение зарядов: свободные электроны перемещаются вверх и между концами стержня возникает разность потенциалов.
Заряды на концах стержня создают поле E, препятствующее дальнейшему разделению зарядов. В какой-то момент сила Лоренца уравновесится с силой возникающего поля:
F л = e · Е Е = F л е = e v B e = v B
Скорость нижнего конца стержня, а значит, и скорость электронов в нем, можно найти, зная частоту вращения и длину стержня:
v = 2 π · n · l
C учетом этого, перепишется выражения для напряженности электрического поля:
Е = 2 π n l B
Индуцируемая разность потенциалов, по определению, равна:
U = Е · l U = 2 π n l 2 B = 2 · 3 , 14 · 10 — 1 · 0 , 2 2 · 0 , 5 = 1 , 3 В
Ответ: 1,3 В.
Задача на силу Лоренца №4
Условие
Какая сила действует на заряд 0,005 Кл, движущийся в магнитном поле с индукцие 0,5 Тл со скоростью 150 м/с под углом 45 градусов к вектору магнитной индукции?
Решение
Это простейшая задача на определение силы Лоренца. Вспомним формулу и запишем, что на заряд действует сила Лоренца, равная:
F = q · v · B · sin α
Подставим значения и вычислим:
F = 0 , 005 · 150 · 0 , 5 · 2 2 = 0 , 26 Н
Ответ: 0,26 Н.
Задача на силу Лоренца №5
Условие
На тело с зарядом 0,8 мКл, движущееся в магнитном поле, со стороны поля действует сила, равная 32Н. Какова скорость тела, если вектор магнитного поля перпендикулярен ей?
Решение
Это классическая задача на применение формулы силы Лоренца. Так как векторы скорости и магнитной индукции перпендикулярны, можно записать:
F = q v B sin α = q v B v = F q B = 32 0 , 8 · 10 — 3 · 2 = 20 · 10 3 м с
Ответ: 20000 м/с.
Проходите магнитостатику? Вам также может быть интересно:
- Задачи на закон Био-Савара-Лапласа.
- Задачи на теорему о циркуляции магнитного поля.
Действие магнитного поля на ток. Правило левой руки.
Поместим между полюсами магнита проводник, по которому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.
Объяснить это можно следующим образом. Вокруг проводника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направлены так же, как и силовые линии магнита, а по другую сторону проводника — в противоположную сторону. Вследствие этого с одной стороны проводника (на рисунке 1 сверху) магнитное поле оказывается сгущенным, а с другой его стороны (на рисунке 1 снизу) — разреженным. Поэтому проводник испытывает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.
Рисунок 1. Действие магнитного поля на ток.
Правило левой руки
Для быстрого определения направления движения проводника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).
Рисунок 2. Правило левой руки.
Правило левой руки состоит в следующем: если поместить левую руку между полюсами магнита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца руки совпадали с направлением тока в проводнике, то большой палец покажет направление движения проводника.
Итак, на проводник, по которому протекает электрический ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказывается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая находится в магнитном поле (рисунок 3 слева).
Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.
Рисунок 3. Сила взаимодействия магнитного поля и тока.
Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изображено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную магнитным силовым линиям. Отсюда следует, что если проводник параллелен магнитным силовым линиям, то сила, действующая на него, равна нулю. Если же проводник перпендикулярен направлению магнитных силовых линий, то сила, действующая на него, достигает наибольшей величины.
Сила, действующая на проводник с током, зависит еще и от магнитной индукции. Чем гуще расположены магнитные силовые линии, тем больше сила, действующая на проводник с током.
Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:
Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную магнитному потоку.
Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Действие магнитного поля на ток можно наблюдать даже при отсутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.
Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электродинамических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.
Похожие материалы:
- Магнитное поле тока. Магнитные силовые линии
- Напряженность магнитного поля
- Магнитная индукция
- Электромагнитная индукция
- Правило правой руки
- Взаимоиндукция
- Самоиндукция
- ЭДС самоиндукции: основные послулаты
- Постоянные магниты
Комментарии
Громова Ева 27.02.2018 18:58 Спасибо большое за статью!
Цитировать
асаев антон 04.09.2014 04:56 спасибо создателю сайта
Цитировать
Обновить список комментариев
Полезные сведения и советы
- Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
- По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
- При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.
Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.
- https://odinelectric.ru/knowledgebase/sila-lorenca-i-pravilo-levoj-ruki-dvizhenie-zarjazhennyh-chastic-v-magnitnom-pole
- https://intech-irk.ru/tehnika/pravilo-pravoj-ruki.html
- https://www.asutpp.ru/pravilo-buravchika-prostym-yazykom.html
- https://electric-220.ru/pravilo-levoj-ruki
- https://seti.guru/pravilo-pravoy-i-levoy-ruki-v-fizike-primenenie