Вопрос-ответ
Теперь пройдемся по некоторым вопросам, касающимся заземления жилищ, которые часто задают люди.
Вопрос 1: Какой лучше использовать материал при установке заземлений?
Это важный вопрос, поскольку от этого зависит работоспособность всей сети.
Ответ:
Основными в заземлении являются контуры, которые обеспечивают отвод электрического тока и рассеивание его в землю.
Для создания контуров применяются изделия из металла или меди. Состоит он из вертикальных (электродов) и горизонтальных (обвязки) электродов.
Согласно ПУЭ в качестве вертикальных электродов можно использовать стальные пруты диаметром 16 мм.
Или же уголки сечением 100 мм и толщиной не менее 4 мм.
Подойдут и стальные трубы диаметром 32 мм, со стенками не менее 3,5 мм.
Если же материал изготовления электродов – медь, то можно использовать пруты диаметром 12 мм, трубы – 20 мм.
Для обвязки же подойдут стальные пруты на 10 мм или лента сечением 100 мм.
Что касается меди, то помимо прутов и труб для обвязки можно использовать медный многожильный трос сечением не менее 35 мм.
Что касается проводников, то для организации N и PEN-проводников должны использоваться медные провода сечением не менее 10 мм, и алюминиевые – не менее 16 мм.
Подробнее читайте здесь – как сделать заземление в частном доме.
Вопрос 2: Как распознать, какая система используется в доме?
Ответ:
Если нет возможности узнать в технической документации, какая из систем применена в доме, то можно узнать ее по определенным признакам.
Следует посмотреть на вводную проводку в ВРУ. Если при однофазной сети на ВРУ подходит 2 провода или 4 – при трехфазной сети, то это указывает на использование TN-C или TN-C-S.
Далее следует рассмотреть клемму подключения PEN-провода, если на ней происходит разделение проводки, то есть после ввода далее на квартиры идет отдельно N и PE-проводники, то это указывает на использование TN-C-S системы.
Если же количество входящих проводов на 1 больше (однофазная – 3 провода, а трехфазная – 5 проводов) – это означает, что в доме установлена система TN-S.
Вопрос 3: Если в доме используется система TN-C, можно ли ее модернизировать?
Ответ:
Переделать TN-C под более современную вполне можно. И для этого лучше использовать TN-C-S.
В таком случае не придется менять нулевой проводник на участке от подстанции к ВРУ.
Для доработки существующей системы достаточно будет провести монтаж дополнительного провода от ВРУ до распределительного щита, а также провести расщепление PEN-проводника на N и PE.
Проложенный провод и будет играть роль защитного проводника (РЕ)
Важно только после расщепления его дополнительно заземлить
Важно знать: Как правильно монтировать электропроводку в деревянном доме. Но помните, модернизация системы должна проводиться только квалифицированными специалистами. С электричеством шутки плохи
С электричеством шутки плохи
Но помните, модернизация системы должна проводиться только квалифицированными специалистами. С электричеством шутки плохи.
Рекомендации
Осуществить процесс перевода электрооборудования на безопасную схему электропитания для владельцев коттеджей и частных домов не так уж и сложно. Для этого достаточно создать отдельный контур заземления, желательно из современных модульных конструкций.
Жителям многоэтажных домов сложнее правильно решить этот вопрос. Расщепление PEN проводника на две составляющие магистрали — это задача энергоснабжающей организации. Она будет выполнена, но в различные сроки.
К этому моменту во время проведения ремонтов помещений необходимо внутри квартиры заменить старую проводку новой трехжильной и подготовиться к переводу схемы на систему TN-C-S. Выведенный из квартиры PE проводник оставить в готовности к подключению электрикам ЖКХ.
Достоинства и недостатки
Система заземления TN-C, как и любая схема, имеет отличия от других заземляющих устройств и связанные с этим достоинства и недостатки.
Достоинства этой системы не связаны с высокой безопасностью людей:
- Низкая стоимость. Это связано с отсутствием отдельного проводника «РЕ», который является пятым проводом при трёхфазном электропитании и третьим при однофазном.
- Простота конструкции. В трёхфазной сети всегда есть четвёртый нулевой провод, поэтому для монтажа TN-C достаточно заземлить среднюю точку вторичной обмотки питающего трансформатора.
Недостаток у системы заземления TN-C всего один, но он перевешивает любые достоинства — повышенная опасность поражения электрическим током,
возможная в разных ситуациях, связанных с отсоединением PEN проводника:
- обрыв этого провода между потребителем и питающим трансформатором;
- срабатывание автоматического выключателя, отсоединяющего нейтральный провод при залипшем контакте фазы.
В этих случаях через включённые лампы и другие электроприборы на занулённых металлических частях электроустановок появляется сетевое напряжение.
Поэтому система TN-C в электроустановках не обеспечивает достаточного уровня электробезопасности. Несмотря на это некоторые неграмотные электромонтёры для заземления электроприборов предлагают её установит и соединить нулевой и заземляющий контакты в розетке или квартирном щитке.
Системы с изолированной от земли нейтралью
Режим работы сетей с изолированной нейтралью достаточно распространён в большинстве регионов России. При этом способе подключения нейтральная точка питающего генератора (трансформатора) с расположением обмоток по схеме «треугольник» остаётся незаземлённой.
Причиной востребованности рассматриваемого варианта является то, что при этой схеме включения нейтрали любое замыкание фазы на землю не может считаться коротким (из-за отсутствия связи через грунт).
Причём в таком аварийном режиме высоковольтная сеть может работать без особого ущерба в течение нескольких часов.
К другим достоинствам этой схемы следует отнести малые токи в месте замыкания одной фазы на землю (ОЗЗ) по причине незначительной ёмкости сети относительно грунта.
В связи с этим такие системы не нуждаются в специальных быстродействующих средствах защиты от ОЗЗ, что значительно сокращает затраты на их эксплуатацию.
К числу существенных недостатков такого подключения следует отнести:
- возможность образования перенапряжений с дуговыми эффектами и относительно небольшими токами (до десятков ампер) в точке ОЗЗ;
- связанная с этим возможность повреждения кабельного или ВВ оборудования по причине разрушения изоляции вследствие дуговых перенапряжений;
- требование учёта повышенного (линейного 380 Вольт) напряжения при необходимости надёжно изолировать линейное электрооборудование;
- трудность выявления точного места повреждения.
Таким образом, перед выбором этого способа подключения нейтрали должны быть учтены все «за» и «против», а также просчитаны возможные последствия аварийных режимов.
СИСТЕМЫ ЗАЗЕМЛЕНИЯ TN – ОПИСАНИЯ И СХЕМЫ
Система TN – C.
Нейтраль трансформатора (общая точка обмоток трансформатора 0,4 кВ, соединённых в звезду) глухо заземлена на питающей подстанции. Питание потребителей осуществляется по 4-х проводной линии. Нулевой рабочий и нулевой защитный проводники объединены в один провод PEN.
В электроустановках на стороне потребителя дополнительные заземляющие устройства не предусматриваются.
Система TN – C была доминирующей на протяжении многих лет, поэтому электроснабжение домов старой постройки до сих пор продолжает осуществляться таким способом. Определить, что дом или квартира подключена по системе TN – C можно по следующим признакам:
- электропитание трёхфазных потребителей осуществляется 4-х проводной линией;
- однофазные потребители подключаются по двум проводам;
- электрические розетки не имеют заземляющего контакта, к ним подходит два провода.
Главный недостаток TN – C — это повышенная опасность. При повреждении изоляции корпус оборудования может длительно находиться под напряжением. УЗО в такой системе бесполезно, так как ток утечки протекает по рабочим проводам и дифференциальный орган на него не реагирует.
Самый радикальный выход из этой ситуации — переход на систему TN – S требует монтаж дополнительного провода на линиях от подстанции до потребителя и реконструкцию внутренней проводки.
Более простой путь заключается в переходе на систему заземления TN – C – S, которая требует только реконструкции внутренней разводки на объекте.
В крайнем случае, владелец дома или квартиры может обезопасить себя ещё более простым способом. Для этого нужно наиболее опасное электрооборудование (стиральная машина, электроплита и т.п.) подключить через:
- диффавтомат;
- или УЗО,
а корпус электроприборов занулить, соединив его с проводом PEN до автомата.
В этом случае ухудшение изоляции электроприбора и появление тока утечки вызовет срабатывание дифференциального устройства (про подключение УЗО без заземления и с системами заземления написано здесь).
Система TN – C – S.
Заземление на подстанции выполнено так же, как в схеме TN – C. Отходящие от подстанции линии имеют 4 провода — три фазных и PEN. Непосредственно перед вводом в электроустановку потребителя или на промежуточном участке линии провод PEN разделяется на рабочий (N) и защитный (PE) нулевой проводник.
Разделение совмещённого нулевого провода выполняется до коммутационных аппаратов, установленных на вводе питания объекта. Внутренняя разводка — 5 проводов для трёх фаз и 3 провода для одной фазы. Корпусы электроприборов соединены с защитным нулевым проводом через 3-х контактную розетку.
TN – C – S обеспечивает защиту от косвенного прикосновения при использовании УЗО или дифавтоматов. При появлении фазного напряжения на корпусе электроприбора возникает режим короткого замыкания и срабатывает обычный автомат питания даже при отсутствии УЗО.
Недостаток системы заключается в уязвимости провода PEN на участке линии до разделения нулевых проводников, особенно при грозовых перенапряжениях.
По этой причине ПУЭ предписывает установку повторных заземлителей у опор ВЛ через каждые 100 – 200 метров в зависимости от грозовой активности района, а также применение способов механической защиты PEN – проводника линии.
TN – C – S является компромиссным решением, обеспечивающим приемлемый уровень защищённости при невозможности построения полноценной системы TN – S, требующей крупных капиталовложений.
Система TN – S.
Этот тип заземления в наибольшей степени отвечает современным требованиям безопасности. Раздельные нулевые провода N и PE, присоединённые к заземляющему устройству на подстанции идут вдоль всей ВЛ до ввода в электроустановку потребителя, то есть, линия электропередачи содержит пять проводов.
Полный перевод всех электрических сетей до 1000 вольт на систему TN – S сдерживается высокой стоимостью и трудоёмкостью реконструкции, а также необходимостью отключения большого числа потребителей на время производства работ.
Защитный нулевой проводник PE, идущий от подстанции к потребителю подвержен повреждению в меньшей степени, так как по нему не протекает рабочий ток. Защищённость от косвенного прикосновения сохраняется и при обрыве рабочего нулевого проводника.
Достоинства
Основным и практически единственным достоинством данной системы заземления – является исключительная экономичность еще монтажа. (Очевидно, что отказ от третьего заземляющего проводника (PE) дает экономию материалов практически на треть, что является очень выгодным при массовом применении этой системы заземления.)
Поэтому данная система заземления и была широко использована в свое время в Советском союзе при типовых, массовых застройках – и вероятнее всего советские инженеры сделали этот выбор вполне сознательно: значительно важнее было обеспечить как можно большее количество людей электричеством, даже и понизив общий уровень электробезопасности. При этом следует отметить – практически во всех европейских странах, изначально была применена, хотя и более дорогостоящая, но и между тем более надежная, с точки зрения обеспечения безопасности потребителя, система защитного заземления – TN-C-S.
Так же в качестве своеобразного достоинства следует признать и относительную простоту переделки данной системы заземления в более надежную и безопасную систему защитного заземления TN-C-S. (Переделка производится лишь добавлением в сеть всего одного провода, причем, как в однофазных, так и в трехфазных схемах.)
Виды заземлений в электроустановках
В отечественной и зарубежной электротехнической практике получили распространение следующие системы заземлений.
Система TN-S
Высоконадежная схема безопасности электрической сети. Обеспечивает качественную защиту человека от поражения электрическим током. На неё не воздействуют высокочастотные колебания от электробритв, дрелей, пылесосов, стиральных машин, электрических массажных устройств. Для системы нет необходимости частой проверки контуров заземления.
Основная идея способа состоит в том, что для защиты применяется сложно комбинированный нулевой проводник PEN, соединённый с нейтралью. На входе. PEN разделяется на защитный ноль РЕ и рабочий ноль N. Система теряет защитные свойства при повреждении PEN на участке от подстанции до входа в здание. Поэтому нормативные документы требуют применения дополнительных мер для повышения эксплуатационной безопасности проводника.
Система TN-C
Наиболее распространённая, но постепенно снижающая популярность ввиду морального устаревания. Заземляющий контур изготовлен на трансформаторной подстанции. Нулевая жила от контура до потребителя подводится по единственному проводу PEN. При однофазном электроснабжении сооружения применяется двухжильная электрическая проводка (фаза и ноль). При трехфазном — четырехжильная (3 фазы и ноль). Заземление в розетках не предусматривается.
Единственный вариант связан с использованием зануления Защита человека и животных от удара электрическим током существует, но не относится к надёжным. Популярность системы объясняется простотой монтажа. В строящихся зданиях и домах установка системы TN-C запрещена.
Система TN-C-S
Модернизированный тип TN-C. Отличительная черта заключается в том, что проводник PEN на пути к потребителю разделяется на две составляющие: нулевую жилу N и защитный ноль PE. Обычно эта операция проводится в распределительном устройстве (электрический щит), где монтируются нулевая и защитная шины. Они соединяются между собой перемычкой. Защитная шина соединяется с контуром заземления.
При однофазной электропроводке в квартиру или частный дом входит кабель с тремя жилами (фаза, ноль и защита). При трехфазной — пятижильный кабель (3 фазы, N и PE). Это позволяет устанавливать розетки с клеммами для заземления. Защитная жила обеспечивает безопасность электрических установок.
Система IT
Устаревшая, но не утратившая актуальности схема. Применяется в условиях, требующих повышенной безопасности электроснабжения: шахты, рудники, химические, газоперерабатывающие заводы. На этих предприятиях возможны скопления или внезапные выбросы горючих газов. Заземление с изолированной нейтралью исключает образование искр.
Но в целом система не очень надёжна. В ней неприменимы стандартные токовые защитные аппараты (ЗОУ). Схемы безопасности сложны, требуют постоянного участия оператора.
Системы заземления TN-C-S и особенно TN-S высокоэффективны. ПУЭ только они разрешены для установки на промышленных объектах и в частном домовладении. Остальные схемы с глухозаземленной нейтралью применяются как остаточные явления. Эксплуатационные ресурсы у них невелики.
Опасность пробоя изоляции или возникновения другой неисправности высока. Она возрастает по мере увеличения токовой нагрузки со стороны потребителей. Всё большее распространение получают электрическое отопление, насосы, электрические станки, установки. В частном секторе электроэнергия используется для ведения малого и среднего бизнеса (фермы, мини-заводы по изготовлению строительных материалов, СТО). К заземлению предъявляются повышенные требования. Предпочтение следует отдавать искусственным системам, так как в них чётко регламентируются нормы.
Виды заземления: TN-C и TN-S, TN-C-S, TT и IT
TN-C заземление было разработано и сконструировано в начале прошлого века в Германии. В данном виде заземления PE-проводник соединён с рабочим нулём в один провод. Основным недостатком TN-C заземления является возникновение большого линейного напряжения в случае обрыва нуля на корпусе электроприбора. Тем не менее, такой вид заземления можно до сих пор встретить в старых советских постройках.
TN-S заземление пришло на смену опасной системе TN-C в далеких 30-х годах прошлого столетия. В этой системе заземления защитный и рабочий ноль уже разделялись на подстанции, а заземлитель был вынесен в отдельную металлическую конструкцию из толстой арматуры. Вследствие этого, даже при разрыве рабочего нуля, не возникало сильного линейного напряжения, которое и стало основным недостатком TN-C заземления.
TN-C-S заземление представляет собой систему, в которой разделение рабочих и защитных нулей происходит непосредственно в самой линии. Однако такой вид заземления, точно так же, как и TN-C заземление имеет один и тот же существенный недостаток, связанный с линейным напряжением в случае обрыва нулевого провода.
TT заземление представляет собой систему, где непосредственно сама КТП имеет соединение с устройством заземления. В ней абсолютно все токопроводящие элементы имеют надежное соединение с заземлителями, которые отделены от заземлителей нейтрали трансформаторной подстанции.
IT заземление представляет собой систему заземления повышенной электробезопасности. В данном виде заземления нейтраль источника электроснабжения имеет собственную защиту, а токопроводящие элементы заземлены. Такая система заземления устанавливается там, где требуются высокие требования касательно электробезопасности установок.
Характеристики и параметры заземления
К каждому из вышеперечисленных видов заземления выдвигаются свои определенные требования, которые регламентируются соответствующими разделами ГОСТа.
Основными для всех систем заземления условиями работы, являются:
- Наличие установленного УЗО;
- Запрет подсоединения к коммуникациям;
- Использование только заземляющего контура для установки стационарных систем.
Как было сказано выше, основным параметром заземления, является его сопротивление. Чем больше напряжение, тем меньше должно быть сопротивление заземления. Так, например, для напряжения в сети 220 Вольт, нормальным сопротивлением заземления считается показатель в 8 Ом. В электрических сетях 380 Вольт, сопротивление заземления должно быть не более 4 Ом, а в сетях 660 Вольт, не более 2 Ом.
Не менее важным параметром заземления, считается и сечение проводников. Сечение алюминиевых и медных неизолированных заземляющих проводников в электроустановках до 1 кВт, должно составлять не менее 6 и 4 кв. мм. Для изолированных защитных проводников, сечение может быть уменьшено, до 1 и 2,5 кв. мм., соответственно.
Схема электроснабжения системы TN-S
Система заземления TN-S имеет ряд особенностей, отличающих её от защиты других типов:
- Нейтральный провод N отделён от заземляющего РЕ на всей длине. Этим она отличается от системы TN-C-S, в которой проводники объединены в линии от подстанции до вводного щита в доме. Единственное место их соединения — заземлённая средняя точка вторичных обмоток питающего трансформатора.
- Заземляющий провод во вводном щите допускается не заземлять. Вместо этого выполняется система уравнения потенциалов (СУП). Основным заземлителем является глухозаземлённая нейтраль трансформатора, в отличие от заземления TN-C-S, при котором в каждом здании необходимо иметь свой контур заземления, с которым соединяется место разделения PEN-проводника.
- При обрыве нейтрального провода в любой точке напряжение на корпусе электроприборов отсутствует. Благодаря этому система TN-S является лучшей защищитой потребителей от поражения электрическим током.
Подробно схема заземления TN-S и требования к ней описаны в ПУЭ п. 1.7.3 и показана там же, на рис. 1.7.2.
Название системы TN-S указывает на её основные конструктивные особенности:
- 1. T (terre — земля) — цепи электропитания заземлены;
- 2. N (neuter — нейтраль) — система соединена с нейтралью источника питания;
- 3. S (separated — раздельный) — нейтральный проводник N разделён с заземляющим РЕ.
В этой схеме защиты исключено попадание питающего напряжения на корпус оборудования. При отгорании нулевой клеммы в щите, обрыве нейтрали или отключении двухполюсного автоматического выключателя в однофазной сети провод РЕ остаётся соединённым с заземлением.
Отсутствие соединения с заземлением после вводного автомата позволяет использовать УЗО или дифференциальный автомат. Работа этих устройств основана на первом правиле Кирхгофа, согласно которому ток в нейтрали в трёхфазной сети равен алгебраической сумме токов всех фаз. В однофазной сети ток в нейтральном проводе равен току в фазном.
При нарушении изоляции или прикосновении человека к токоведущим частям это равенство нарушается и появляется ток утечки, что приводит к срабатыванию защиты. Его величина зависит от места установки и составляет 30-100мА.
Схема заземления TT
В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения. Четвертый проводник используется в качестве функционального нуля N.
Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.
Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах. В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.
Система с изолированной нейтралью IT
В IT нейтраль физически не имеет контакта с землей или имеет, но через устройства имеющие большое сопротивление, а токопроводящие элементы системы при этом заземляются.
Расшифровывается IТ как:
I – (от английского isolation) изолированная нейтраль;
Т – обозначает наличие локального (местного) заземления частей электроустановок;
В таких системах ток утечки на корпус или землю будет довольно низким и не окажет влияния на работу оборудования.
Применяют IT в установках специального назначения, с повышенными требованиями к надежности и безопасности (например, в больницах для реализации аварийного электроснабжения).
Категории
Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.
Все заземлители делятся на две естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.
Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.
Заземляющие системы TT и IT
Схемы заземляющих систем TT и IT
Схема ТТ
Заземление TT применяется в тех исключительных случаях, когда обеспечить надежную защиту с применением системы TN-C-S не представляется возможным или связано со значительными затруднениями. Это в основном касается удаленных от городских центров территорий, обычно относящихся к отдаленным сельским местностям и регионам. В этих условиях все чаще применяются системы заземления TT, в которых предусматривается «глухое» соединение нейтрали трансформатора с землей с последующей передачей 3-х фазного напряжения с использованием четырехпроводной линии.
На стороне, где располагаются нагрузки, как правило, обустраивается уже не повторное, а местное заземление вертикально-штыревого типа. К нему подключаются все медные шины-проводники PE, подсоединяемые с другой стороны к корпусу электрооборудования.
Четырехпроводная система заземления TT
Эта система официально разрешена к применению на территории России совсем не так давно. Несмотря на это она быстро «прижилась» в различных условиях эксплуатации энергосистем и широко используется в сельских районах, удаленных от городских центров на значительные расстояния. В пределах городской черты схема заземления типа TT нередко применяется при обеспечении электричеством различных торговых точек и небольших временных построек, связанных с оказанием бытовых услуг.
При этом подходе к организации систем защитного заземления должны выполняться особые требования. Они касаются вопроса установки в обслуживаемые цепи приборов и устройств защитного отключения (УЗО), а также специальных молниеотводов с функцией защиты от грозы.
Схемы IT
Во всех рассмотренных ранее системах нейтраль наглухо связана с землей, что превращает их в универсальные и надежные средства защиты. Вместе с тем они не лишены серьезных недостатков, описанных при анализе, проведенном в соответствующих разделах. Более высокий уровень безопасности гарантируют системы, в которых используется никак не связанный с землей нейтральный провод.
Системы заземления IT – это классический вариант изолированного от земли включения кабельных линий, не имеющий аналогов по степени гарантируемой им безопасности
Такое включение без нейтрали характерно для схем, обозначаемых как IT. Отсутствие факторов, приводящих к отключению энергоснабжения и потере системой защитных функций, позволяет применять их на следующих объектах:
- во взрывоопасных зонах;
- в отделениях медицинских учреждений с установленным в них специальным оборудованием, предназначенным для сохранения жизни пациентов и больных;
- на профильных предприятиях, занимающихся нефтепереработкой и газодобычей;
- во всех отраслях энергетики, а также в научных лабораториях, оснащенных особо чувствительным оборудованием;
- на других, не поддающихся учету объектах, связанных с вопросами обороны, в частности.
Системы заземления IT – это классический вариант изолированного от земли включения кабельных линий, не имеющий аналогов по степени гарантируемой им безопасности. Его основные характеристики – это изолированное состояние нейтрали трансформатора – «I» и наличие на приемной стороне собственного контура заземления («Т»). Напряжение к потребителю поступает в этом случае по ограниченному количеству шин, а все проводящие ток части оборудования надежно подсоединяются к местному заземляющему устройству (ЗУ).
Рассмотренный способ организации защиты только подтверждает правило, гласящее, что надежное заземление является гарантией эксплуатационной безопасности (включая сохранение жизни человека).
В заключительной части обзора отметим, что все рассмотренные системы касаются организации защиты в электроустановках до 1 кВ в зависимости от способа прокладки нулевого провода. Имеющиеся при этом отличия касаются только отдельных деталей обустраиваемых сетей. В общем они предназначаются для следующих важных целей:
- Обеспечение не только надежного во всех отношениях, но и безопасного в повседневной эксплуатации функционирования электрооборудования, подключенного на потребительской стороне.
- Снижение вероятности случайного поражения током работающего на нем персонала и людей, пользующихся этими электроустановками.
Как сделать монтаж контура заземления самостоятельно
Монтаж заземления можно сделать своими руками. Все шаги будут описаны ниже.
Выбираем место
Оно должно находиться в той части участка возле дома, куда не заходит человек без острой необходимости и домашние животные. Контур располагается не ближе 1 м от фундамента постройки. Лучше, если этот участок будет огорожен невысокой изгородью. На земле отмечаются все точки нахождения электродов. Обычно строится правильный, равнобедренный треугольник.
Земляные работы
Вдоль всей разметки копается траншея глубиной 0,5-0,6 м. Аналогичная траншея роется по ходу укладки шины, соединяющей контур с вводным электрошкафом.
Собираем конструкцию
Вначале, согласно схемы вбиваются штыри на заданную глубину (обычно 2-2,5 м). К вершинам стержней приваривается металлосвязь. Одна полоса приваривается к крайнему электроду (вершине треугольника) и укладывается в траншею, идущую к дому.
Ввод в дом
Шина от контура вводится во входной электрощит. На конце сверлится отверстие для болтового соединения. Сюда присоединяется соответствующая жила кабеля. При TN-C-S-системе шина соединяется с шиной-расщепителем.
Проверка и контроль
Контроль проводится путем измерения электрического сопротивления всего контура. Оно не должно превышать нормируемые показатели.
Часто используется простой способ проверки. Присоединяется лампа накаливания мощностью 100-150 Вт – один конец на фазу, второй – на заземление. Четкое сияние ее указывает на качественный монтаж. При тусклом горении необходимо проверить качество стыков. Если лампа не горит, то сборка проведена неправильно.
Watch this video on YouTube
Почему система TN-C морально устарела
В значительной части современной техники используются импульсные блоки питания. В этих устройствах есть фильтры от ВЧ помех. Это конденсаторы малой ёмкости, соединяющие схему с металлическим корпусом и заземляющим контактом вилки.
Помехи, приходящие из электросети или возникающие при работе электрооборудования через конденсатор и заземляющий провод «уходят в землю» и не нарушают работу подключённых к блоку питания приборов.
В обычных условиях ток, проходящий через фильтр недостаточен для срабатывания УЗО или поражения человека электричеством, но при пробое этого конденсатора корпус оказывается подключённым к сети 220В. Эта ситуация не является опасной при наличии системы заземления, соответствующей требованиям ПУЭ, но может привести к электротравме, при её отсутствии или использовании системы TN-C.
Так же является опасной ситуация обрыва нулевого провода «N». В этом случае корпус окажется под напряжением через цепь «фаза-электроприбор-ноль-заземление-корпус».
Аналогичная ситуация возникает при возникновении течи в стиральной или посудомоечной машине или перегорании ТЭНа в бойлере.
Главный недостаток системы TN-C это появление опасного потенциала на заземленных корпусах техники при отгорании PEN проводника. То есть в случаи обрыва PEN проводника заземление (зануление) теряет свои защитные свойства. |