Люминесцентные лампы

Разновидности и характеристики

Разновидности и характеристики

Классификация люминесцентных ламп

Люминесцентные лампы (ЛЛ) делятся на осветительные общего назна­ чения и специальные. К ЛЛ общего назначения относят лампы мощнос­ тью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классифика­ ции ЛЛ специального назначения используют различные параметры. По мощ­ности их разделяют на маломощные (до 15 Вт) и мощные (свыше80 Вт); потипу разряда — на дуговые, тлеющего разряда и тлеющего свечения;по излучению — на лампы естественного света, цветные лампы, лампы со специальными спектрами излучения, лампы ультрафиолетового излучения; поформе колбы — на трубчатые и фигурные;по светораспределению — с ненаправленным светоизлучением и с направленным, например, рефлек­ торные, щелевые, панельные и др.

У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, стоит буква Ц, а при цветопередаче особо высокого качества — буквы ЦЦ. Маркировка ламп тлеющего разряда начинается с букв ТЛ.

Разновидности спектрального состава люминесцентных ламп

Спектральный состав

видимого излучения зависит от состава люминофо­ ра, в соответствии с чем лампы обозначают буквами. Различную цветность можно получить с помощью люминофора — галофосфата кальция в зависи­ мости от цветовой температуры лампы.

Цветовой температурой

называется температура абсолютно черного тела, при которой цвет его излучения совпадает с цветом самого тела (К — Кельвин, Т = t + 273, где Т — температура в К, t — температура в °С).

По спектру излучаемого света

лампы подразделяются:

ЛБ — лампы белого света с цветовой температурой 4200 К, соответству­ ющей цветовой температуре яркого солнечного дня;

ЛХБ — лампы холодно-белого света с цветовой температурой 4800 К;

ЛТБ — лампы тепло-белого света с цветовой температурой 2800 К, соответствующей цветности излучения ламп накаливания;

ЛД — лампы дневного света, имеющие цветовую температуру 6500 К, соответствующую цветовой температуре голубого неба без солнца.

Для осветительных установок,

в которых требуется правильная цветопере­ дача, выпускаются лампы:

ЛЕЦ — лампы естественного (Е) цвета; ЛТБЦ

— лампы тепло-белого (ТБ) цвета; ЛДЦ — лампы дневного (Д) цвета.

Стоящие после обозначения цифры указывают мощность лампы в ваттах. Люминесцентные лампы выпускаются мощностью 8… 150 Вт.

Пример 1.ЛТБ 30 означает: люминесцентная, тепло-белого цвета, мощ­ность 30 Вт. Пример2. ЛБ 20 обозначает: люминесцентная лампа белого цвета мощнос­тью 20 Вт.

Световой поток после 70% средней продолжительности горения снижает­ся до 70% среднего номинального потока. Наиболее долго лампы служат при комнатной температуре и номинальном напряжении. Повышение и понижение напряжения снижают срок службы, но к повышениям напряжения люминесцентные лампы значи­ тельно менее чувствительны, чем лам пы накаливания. Люминесцентные лампы показаны на рис. 14.5.

Раньше их называли: • прямыми (рис. 14.5.а);

. кольцевыми (рис.14.5.6); « U -образными (рис. 14.5.в).

Эти названия нашли отражение в старых обозначениях светильников для люминесцентных ламп. В настоя­щее время все лампы, кроме прямых, называют фигурными (рис. 14.5.б,в).

Технические характеристики наиболее распространенных лампТаблица 14.1

Тип лампы Мощность, Вт Световойпоток, лм Продолжительность горения, ч Тип цоколя
Лампы люминесцентные ртутные низкого давления
Л6-20 20 1200 7500 Ц2Ш-13/35
ЛБ-40 40 3000
ЛВ-80 80 5220
ЛД-40 40 2340
ЛД-80 80 4070
ЛДЦ-40 40 2100
ЛДЦ-80 80 3610
ЛТБ-40 40 2780
ЛТБ-80 80 4720
ЛХБ-40 40 2780
ЛХБ-80 80 4600

Классификация и типология люминесцентных ламп

Естественно, что прогресс в производстве таких изделий, как люминесцентные лампы, не стоит на месте, и если ранее применялись в основном аналогичные экземпляры со схожими техническими характеристиками, то сегодня потребитель может подобрать себе тот вариант, который будет для него наиболее оптимальным и эффективным.

Существует множество признаков, по которым можно классифицировать эти лампы, но тем не менее, самым основным из, все же, будет признак показателей давления.

На данный момент на рынке представлены газозарядные ртутные экземпляры высокого и низкого давления.

Лампы высокого давления нашли свое применение в основном в освещении вне помещений. Поскольку такие изделия обладают высокой мощностью, то внутри здания их свет будет довольно неприятен для восприятия его глазом.

Также лампы высокого давления отлично подходят для сборки каких-либо осветительных установок.

Лампы низкого давления обладают сравнительно меньшей мощностью, а значит, подходят для применения внутри зданий.

Назначение помещения может быть абсолютно любым: люминесцентные лампы такого показателя подойдут и для цеховых и производственных зданий, и для жилых помещений.

Помимо разделения ламп по принципу давления существует еще и классификация по диаметру трубки или колбы лампы, а также по схеме зажигания.

Для примера можно взять продукты самых известных производителей, например, Osram и Philips. Если внимательно присмотреться к данным на упаковке, то можно увидеть букву и цифру рядом. Это и есть маркировки типа изделия.

Итак, люминесцентные лампы подразделяются на:

  • Т5 – лампы с таким показателем являются довольно редким явлением, не нашедшим признания у покупательского сегмента. Стоимость их довольно высока, однако степень светоотдачи показывает прекрасные результаты – до 110 лм/ватт. Стоит отметить, что сейчас производители значительно увеличили объемы производства люминесцентных ламп с таким показателем.
  • Т8 – новый продукт, имеющий довольно высокую цену и рассчитанный на нагрузку не более 0,260 А.
  • Т10 – аналог лампам маркировки Т12, отличающийся довольно низким качеством и уровнем эффективности.
  • Т12 – лидер рынка люминесцентных ламп. Включает в себя широкое разнообразие подтипов, что говорить, практически все стандартные модели относятся к этой группе. В их число входят представители практически всех производителей люминесцентных ламп.

Упомянутый выше принцип классификации по схеме зажигания имеет под собой два типа: требующие стартера и не требующие его.

Мощность тоже является довольно значимой характеристикой люминесцентных ламп, соответственно, это тоже стало фактором для выделения отдельной классификации.

По показателям мощности лампы подразделяются на:

  • Стандартные – с маркировкой Т12;
  • HO – лампы высокой мощности, однако, отличаются сравнительно меньшей светоотдачей;
  • VHO – лампы, способные выдержать нагрузку до 1,5 А;
  • «Эконом» — варианты люминесцентных ламп.

К числу критериев, по которым можно распределить лампы по группам, относят и длину.

Вариантов эта дифференциация представляет великое множество. Как правило, производители в обязательном порядке указывают эти данные в инструкции или на упаковке.

Классификация по использованию стартера

Стоит отметить и тот факт, что люминесцентные лампы можно разделить на виды и по типу подключения их.

Более подробно о том как подключать люминесцентные лампы различными способами, можно прочитать в этой статье.

Однако в этом случае выделить какие-либо точные категории довольно сложно, поскольку каждый тип, выделенный, например, по мощности или необходимости присутствия стартера, требует соблюдения своих нюансов.

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений.
В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.

Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Цветность и состав излучения ламп

Излучение люминесцентных ламп создается в основном за счет люминофора, трансформирующего ультрафиолетовое излучение разряда в прах ртути. Эффективность преобразования ультрафиолетового излучения в видимое зависит не только от параметров исходного люминофора, но и от свойств его слоя. В люминесцентных лампах слой люминофора покрывает практически полностью замкнутую поверхность трубки, причем свечение возбуждается изнутри, а используется снаружи. Кроме потока люминесценции суммарный световой поток люминесцентных ламп содержит видимое излучение линий ртутного разряда, просвечивающее сквозь слой люминофора. Световой поток люминесцентных ламп зависит, таким образом, как от коэффициента поглощения люминофора, так и от коэффициента отражения. Цветность излучения люминесцентной лампы не точно соответствует цветности используемого люминофора. Поток излучения ртутного разряда как бы сдвигает цветность лампы в синюю область спектра. Это смещение незначительно, поэтому поправка на цветность находится в пределах допуска на цветность ламп.

Для люминесцентных ламп, используемых в установках общего освещения, из многочисленных оттенков, которые можно получить с помощью люминофора галофосфата кальция, выбраны четыре, определяющие типы люминесцентных ламп: ЛД – дневного света, цветовая температура 6500 К; ЛХБ – холодно-белого света с цветовой температурой 4800 К; ЛБ – белого света с цветовой температурой 4200 К; ЛТБ – тепло-белого света с цветовой температурой 2800 К. Среди ламп указанных цветностей различают также лампы с улучшенным спектральным составом излучения, обеспечивающим хорошую цветопередачу. К обозначению таких ламп после букв, характеризующих цвет излучения, добавляется буква Ц (например, ЛДЦ, ЛХБЦ, ЛБЦ, ЛТБЦ). Для изготовления ламп с улучшенной цветопередачей к галофосфату кальция добавляют другие люминофоры, излучающие главным образом в красной области спектра. Контроль соответствия ламп по излучению заданной цветности осуществляют путем проверки цветности излучения с помощью колориметров.

В люминесцентных лампах излучение охватывает практически весь видимый диапазон с максимум в желтой, зеленой или голубой его части. Оценить цвет такого сложного излучения только по длине волны не предоставляется возможным. В этих случаях цвет определяют по координатам цветности x и y, каждой паре значений которых соответствует определенный цвет (точка на цветовом графике).

Правильное восприятие цвета окружающих предметов зависит от спектрального состава излучения источника света. В этом случае принято говорить о цветопередаче источника света и оценивать ее по значению параметра Rа, называемого общим индексом цветопередачи. Значение Rа является показателем восприятия цветного предмета при его освещении данным источником искусственного света по сравнению с эталонным. Чем больше значение Rа (максимальное значение 100), тем выше качество цветопередачи лампы. Для люминесцентных ламп типа ЛДЦ Rа = 90, ЛХЕ – 93, ЛЕЦ – 85. Общий индекс цветопередачи является усредненным параметром источника света. В ряде специальных случаев дополнительно к Rа используют индексы цветопередачи, обозначаемые Ri, которые характеризуют восприятие цвета, например, при его сильной насыщенности, необходимости правильного восприятия цвета человеческой кожи и тому подобного.

Компактные лампы

В компактных лампочках могут быть внешние или встроенные аппараты включения. Они изогнуты в виде цилиндрической колбы и оборудованы цоколем с несколькими внешними штырями. Мощность светильников, у которых имеется внешний аппарат включения, находится в промежутке от 5-ти до 55-ти ватт.

С помощью тепло-белого цвета наиболее ярко выделяется розовый или красный цвет. С их помощью очень качественно передается естественный цвет лица. Примером расшифровки отечественных ламп, например, ЛБ-65, служат следующие показатели: лампа люминесцентная, белого цвета, мощностью 65 ватт.

Таким образом, маркировку ламп необходимо знать, чтобы использовать ту или иную модель там, где это необходимо. Только в этом случае, при использовании осветительных приборов, будет достигнут максимальный эффект.

Основные характеристики люминесцентных светильников

Большое разнообразие форм и размеров источников света, относящихся к упомянутому типу, открыло широкие возможности для производителей осветительных приборов. Принцип работы люминесцентных светильников и их комплектацию можно назвать унифицированными величинами. Все модели состоят из элементов:

  • стального или алюминиевого каркаса;
  • защитной решетки;
  • отражателя;
  • рассеивателя;
  • системы запуска.

Светильники разделяются по классу распределения света, степени защиты, способу установки и классу цветопередачи. Показатель распределения высчитывается в процентах, где за единицу (100%) берется прямой столб света. По данному признаку светильники делятся на:

  • отражающие – не более 20%;
  • частично отражающие – до 40%;
  • направленные – более 80%
  • частично направленные – 60-80%;
  • рассеивающие – не более 60%.

Степень защиты в соответствии международной классификацией Ingress Protection (IP) определяет сферу использования осветительных приборов. По предназначению и защищенности от влажности и загрязнений люминесцентные светильники подразделяются на типы:

  • промышленные;
  • офисные;
  • бытовые.

Светильник, вне зависимости от сферы его применения, может иметь несколько способов установки. Если речь идет о потолочных осветительных приборах, то можно рассматривать подвесные, накладные и встраиваемые приборы. Светильники могут комплектоваться линейными и компактными лампами (ЛЛ и КЛЛ). Существуют одно-, двух и трехламповые приборы.

Яркость и интенсивность освещения прямо зависит от количества ламп, их мощности и качества люминофора. Цветность ламп данного типа регламентирована государственным стандартом ГОСТ 6825-91 и имеет следующую кодировку:

  • лампы дневного света 6-6,5 КК (кило кельвинов) – Д;
  • белого холодного свечения 5 КК – ХБ;
  • белого теплого свечения 3 КК – ТБ;
  • белые естественного света 4 КК – Б.

Максимально качественной цветопередачей обладают лампы с люминофором класса «Люкс» и «Супер Люкс», имеющие маркировку Ц и ЦЦ. Показатель цветопередачи влияет на комфорт. Он рассчитывается и приравнивается к аналогичной величине естественного света, взятой за коэффициент 100, обозначаемый как Ra.

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Характеристики ламп

Основными характеристиками всех выпускаемых энергосберегающих приборов являются:

Цветовая температура

При использовании устройств с нитью накаливания получить разную цветовую температуру проблематично. С появлением энергосберегающих устройств стало возможно применять лампы белого света с различным оттенком цвета. По цветовой температуре светильники бывают:

  • 6500К — холодный белый свет, который хорошо подходит для уличного освещения;
  • 4200К — нейтральный белый, средний между холодным и теплым светом. Подходит для использования в жилых, промышленных, медицинских и других помещениях.
  • 2700К — теплый белый свет, создает уют в доме и используется для освещения жилых помещений.

Дополнительная информация! Выбор цветовой температуры индивидуален и зависит от предпочтений человека и целей, для которых будет использовано освещение.

Тип цоколя

Тип цоколя стандартизирован и существует в двух исполнениях:

  • резьбовое: обозначение данного цоколя начинается с буквы Е и заканчивается числом, который обозначает диаметр цоколя (Е14, Е27).
  • штырьковое: маркировка начинается с буквы G, а цифры означают расстояние между контактами.

Дополнительная информация! Для покупки осветительного прибора с правильным цоколем, лучше взять с собой в магазин вышедшую из строя или заглянуть в паспорт светильника.

Срок службы

Энергосберегающие приборы являются надежными и долговечными устройствами. Срок их службы достаточно большой и обычно составляет от нескольких тысяч до десятков тысяч часов работы.

Обратите внимание! Важно понимать, что на срок службы существенно влияет количество циклов включения/отключения. Чем их больше — тем меньше будет служить энергосберегающая лампа

Световой поток и светоотдача

Световой поток — это физическая величина, показывающая количество отдаваемой световой энергии в единицу времени. В международной системе единиц (СИ) Он измеряется в люменах (лм или lm).

Светоотдача ламп показывает соотношение светового потока к мощности прибора (лм/Вт). Старые и неэффективные устройства накаливания имеют низкую светоотдачу (10-20 лм/Вт), более совершенные энергосберегающие устройства имеют высокий коэффициент полезного действия, а соответственно и светоотдачу (около 50-100 лм/Вт).

Важно! Светоотдача может меняться со временем при длительной эксплуатации. Такое изменение является нормальным и связано с износом светодиодов или ухудшением свойств люминесцентного прибора

Мощность

Важной характеристикой всех электрических приборов является мощность. Лампы освещения тоже не являются исключением

При использовании ламп накаливания существенно увеличивается количество потребляемой электрической энергии. Чтобы этого избежать потребители постепенно переходят на энергосберегающие приборы, потому что они энергоэффективные и имеют минимальную мощность лампы при большом световом потоке.

Таблица сравнения ламп, показывающая соответствие мощности накаливания и энергосберегающих:

Мощность, Вт Световой поток, лм
Накаливания Светодиодные Люминесцентные
25 3 6 255
40 5 11 430
60 9 15 720
75 11 19 955
100 14 18 1350
150 19 45 1850
200 27 70 2650

Обратите внимание! На упаковке светодиодных и энергосберегающих устройств производители часто указывают эквивалент (например 11 ватт энергосберегающая лампа равна 40 ваттной накаливания), который соответствует мощности лампы накаливания. Это делается не только из маркетинговых целей, но и для понимания покупателем световой способности прибора

Принцип работы и устройство

Лампочка состоит из таких элементов:

  1. Трубка или колба. Этот компонент бывает разным в зависимости от исполнения.
  2. Цоколь. Он может быть 1 или 2.
  3. Нити накаливания, что расположены внутри.
  4. На внутренней поверхности нанесен люминофор – важнейшая деталь.
  5. Внутри содержится в вакуумных условиях инертный газ, пары ртути, под стабильным давлением.

Когда лампочка включается, между электродами внутри возникает дуговой тлеющий разряд. Газ проводит ток и провоцирует появление УФ излучения. Люминофор поглощает его и воспроизводит заметный для человеческого зрения свет. В подобных источниках применены энергосберегающие технологии. Разряд внутри поддерживает термоэлектронная эмиссия заряженных частиц с поверхностью катода.

Важно! В зависимости от того какой люминофор нанесен могут быть разные оттенки свечения

Влияние внешней температуры и условия охлаждения ламп

В процессе эксплуатации температура трубки может изменяться и отклоняться от оптимального значения. То есть, она увеличивается или уменьшается, приводя к снижению светового потока. Одновременно ухудшаются пусковые условия, заметно сокращается срок службы изделий.

Падение надежности запуска обычных лампочек становится особенно заметным при достижении температуры – 5С и ниже, особенно, если такое понижение сопровождается падением напряжения в сети. Например, при напряжении сети 180 В вместо положенных 220 В и температуре -10 градусов, количество срывов запуска люминесцентных ламп может составить от 60 до 80% от их общего числа. Подобная зависимость делает неэффективным применение данных источников света в условиях низких температур и скачков напряжения.

Маркировка

В России и за рубежом используются разные стандарты маркировки данных изделий.

Международная маркировка

Американские производители люминесцентных ламп маркируют свои продукты по схеме FxTy, где

  • F — fluorescent (в переводе с англ. — «люминесцентный»);
  • x — мощность (Вт);
  • T — tubular (в переводе с англ. — «трубчатый»), может быть иной формы;
  • Y — диаметр 1/8 дюйм.

После этого латинскими буквами указывается цвет прибора:

  • WW — теплый белый;
  • CW — холодный белый;
  • N — нейтральный;
  • D — дневной;
  • WWX — теплый белый с высокой цветопередачей;
  • CWX — холодный белый с высокой цветопередачей;
  • BLB — ультрафиолет.

В конце строки добавляются буквы, указывающие на особенности изделия. Это могут быть следующие обозначения:

  • RS — быстрый старт;
  • IS — мгновенный старт;
  • HO — высокая эффективность.

Как видно, производители указали в маркировке изделия основные технические характеристики.

Российская маркировка

Отечественные производители наносят иную маркировку с использованием букв кириллицы:

  • «Л» — лампа;
  • «Д» — дневной свет;
  • «Б» — белый;
  • «Т» — теплый;
  • «Е» — естественный;
  • «Х» — холодный.

Если модель компактная, то в начале маркировки используется буква «К». Лампы дневного света с улучшенной цветопередачей в конце строки имеют букву «Ц». Иногда можно встретить две такие буквы, что указывает на наилучшую цветопередачу.

Первая цифра в маркировке описывает цветовую передачу (нужно умножить на 10), две следующие — цветовую температуру (в кельвинах), деленную на 100.

Где применяются люминесцентные лампы

Как было сказано ранее, люминесцентные лампы находят довольно широкое применение практически повсеместно.

Несмотря на некоторые отрицательные стороны применения этого изделия, достоинства его, все же переоценить довольно трудно.

Каждый из нас учился в школе, посещал учреждения здравоохранения, административные здания и т.д.

Так вот система освещения в этих помещения как раз основывается на применении люминесцентных ламп.

Как правило, это довольно масштабные по своим размерам трубки, обеспечивающие качественное освещение в зданиях с некоторыми архитектурными особенностями.

Но если общественные здания отличаются своими габаритами, например, высокими потолками, большими по площади залами и комнатами, где освещение требуется довольно мощное и постоянное, то в домашних условиях люминесцентные лампы, которые оптимально будут эксплуатироваться там, не подойдут.

К счастью, уровень производственных навыков значительно вырос, а значит, появились адаптированные к домашним условиям люминесцентные лампы.

Они отличаются куда меньшими размерами, имеют в своем составе электронные балласты, которые возможно подключать в патроны, применяемые в домашней электронике.

И несмотря на свежесть этого новшества, адаптированные лампы уже прочно завоевывают этот сегмент рынка.

Кстати, существует довольно интересный факт. Уже привычные нам плазменные телевизоры имеют в своем механизме как раз люминесцентные лампы!

Конечно, это тоже адаптированный в соответствии со спецификой применения вариант, но, тем не менее, принцип его работы заключается в том же самом явлении. Жидкокристаллические экраны, кстати, ранее изготовлялись только с применением люминесцентных ламп, однако позже они были заменены на светодиоды.

Все мы видели световую рекламу на улицах города. Она тоже не обошлась без применения люминесцентной лампы! Фасады зданий также освещают именно этим изделием.

Хотя на данный момент конкуренцию в области световой рекламы люминесцентным лампам составляют SMD и DIP экраны.

Также люминесцентные лампы получили широкое применение в области растениеводства для выращивания растений.

Если говорить в общем, выделяя основную мысль применения люминесцентной лампы, то можно сделать вывод: их имеет смысл применять в тех случаях, когда требуется снабдить светом помещение больших размерных показателей.

Совместная работа с системами цифрового интерфейса освещения с возможностью адресации позволяет обеспечить и высокую светоотдачу, и, в то же время, не потратить крупных сумм на оплату электроэнергии, ведь по сравнению с лампами накаливания люминесцентные лампы позволяют сократить потребление энергии более чем в половину! Тем самым, являясь энергосберегающими.

Помимо этого, лампы сокращают расходы и длительностью своего применения.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector