Проблемы, которые вызывают вихревые токи. Скин — эффект
Токи Фуко не всегда представляют собой полезное явление.
Определение 2
Вихревые токи — это токи проводимости, из-за чего они рассеивают часть энергии в виде джоулевой теплоты.
Такая энергия, к примеру, в роторе асинхронного двигателя, обычно изготавливаемого из ферромагнетиков, разогревает сердечники, чем ухудшает их характеристики. Чтобы избежать данного явления, сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора. Пластины устанавливают таким образом, чтобы токи Фуко были направлены поперек них. В случае малой толщины пластин вихревые токи обладают небольшой объемной плотностью. С появлением ферритов и веществ с большим магнитосопротивлением появилась возможность изготавливать сердечники сплошными.
Определение 3
Вихревые токи наводятся в проводниках, в которых протекают переменные токи. Причем токи Фуко всегда направлены таким образом, что ослабляют ток внутри провода и усиливают его около поверхности. Соответственно, изменяющийся с высокой частотой ток распределен по сечению провода неравномерно. Данное явление называется скин — эффектом (поверхностным эффектом).
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание
По причине такого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой в качестве проводников применяют трубки. Скин — эффект может быть использован для разогрева поверхностного слоя металла, что позволяет применять данное явление в процессе закалки металла. Также стоит отметить, что, изменяя частоту поля, можно производить закалку на любой необходимой глубине.
Определение 4
Приближенные формулы, которыми может быть описан скин-эффект в однородном цилиндрическом проводнике:
RwR=1+k43, при k<1,,997k+,277 при 1,5<k<10,k+14+364k при k>10.
Где Rw представляет собой эффективное сопротивление проводника радиусом r переменному току с циклической частотой w. R — сопротивление проводника постоянному току.
Где эффективная глубина проникновения переменного тока (δ) (расстояние от поверхности проводника, на котором плотность тока ослабевает в e=2,7 раз в сравнении с плотностью на его поверхности) равна:
μ — относительная магнитная проницаемость, μ — магнитная постоянная, σ — удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее
скин — эффект, тем меньше величины w и σ, при которых его следует учесть.
Проблемы, которые вызывают вихревые токи
Чаще же это явление вредное, например, нагрев сердечника трансформатора. Однако если сердечник трансформатора сделать не сплошным, а из набора пластинок с прослойками диэлектрика, то токи Фуко заметно уменьшаются (рисунок 3)
Взаимодействие магнита и магнитных полей вихревых токов достаточно эффектно демонстрируют с помощью маятника Вальтенхофена. В сплошной пластине токи столь велики, что колебания маятника прекращаются сразу же, а пластина в виде гребенки колеблется достаточно долго (рис.4).
Можно говорить о том, что уменьшается сечение проводника и возрастает его сопротивление. В технике токов высоких частот применяют трубчатые проводники или проводящие ленты (шины).
Зависимость плотности тока от расстояния до центра проводника достаточно сложна и выражается через специальные функции, но в пределе высоких частот можно получить:
где \(δ=\frac{1}{\sqrt{μμ_{0}ωσ}}, ω=2πν\) , и использованы следующие обозначения: ν — частота переменного тока, µ — магнитная проницаемость проводника, \(µ0 =4π·10-7 Гн/м\) — магнитная постоянная, σ — удельная электропроводность проводника.
Величину \( d=\frac{\sqrt{2}}{\sqrt{μμ_{0}ωσ}}=\frac{1}{\sqrt{μμ_{0}πνσ}}\) часто называют глубиной скин-слоя, то есть расстоянием, на котором амплитуда меняется в е раз.
Открытие вихревых токов
По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.
Способы уменьшения блуждающих токов
Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.
Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.
Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.
В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.
Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой
Построение системы контуров
Основная сложность заключается в правильном выделении контуров. Количество контурных токов будет равняться числу выбранных контуров.
Важно! Каждый элемент схемы должен входить хотя бы в один контур. Распространены две методики выбора контуров. Распространены две методики выбора контуров
Распространены две методики выбора контуров.
Использование планарных графов
Метод планарных графов применяется при ручном расчете, поскольку он наиболее прост и нагляден. Для построения плоского графа схему рисуют таким образом, чтобы не было взаимного пересечения ветвей. Получается, что схему можно разбить на несколько ограниченных участков, которые образуют контуры.
Рассматриваемая методика неприменима без дополнительных преобразований, если невозможно выразить схему в виде планарного графа.
Метод выделения максимального дерева
Метод выделения максимального дерева более абстрактный и используется при автоматизированных расчетах и наличия специализированных программ. Суть метода заключается в исключении из цепи некоторых ветвей в соответствии со строгими правилами, которые таковы:
- При каждом шаге исключается только одна ветвь;
- Исключение ветви не должно приводить к разбиению графа на несколько частей или к «висячим узлам»;
- Количество удаленных звеньев равняется числу независимых контуров;
- Подключение удаленной ветви образует соответствующий контур.
Принципы вихревых токов
Катушка из медной проволоки является распространенным методом для воспроизведения индукции вихревых токов. Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. Магнитные поля образуют линии вокруг провода и соединяются, образуя более крупные петли. Если ток увеличивается в одной петле, магнитное поле будет расширяться через некоторые или все из петель проволоки, которые находятся в непосредственной близости. Это наводит напряжение в соседних петлях гистерезис, и вызывает поток электронов или вихревые токи, в электропроводящем материале. Любой дефект в материале, включая изменения в толщине стенки, трещин, и прочих разрывов, может изменить поток вихревых токов.
Закон Ома
Закон Ома является одним из самых основных формул для определения электрического потока. Напряжение, деленное на сопротивление, Ом, определяет электрический ток, в амперах. Нужно помнить, что формулы для расчета токов не существует, необходимо пользоваться примерами расчета магнитного поля.
Индуктивность
Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. С увеличением тока, катушка индуцирует циркуляцию (вихревых) потоков в проводящем материале, расположенном рядом с катушкой. Амплитуда и фаза вихревых токов будет меняться в зависимости от загрузки катушки и ее сопротивления. Если поверхность или под поверхностью возникнет разрыв в электропроводном материале, поток вихревых токов будет прерван. Для его налаживания и контроля существуют специальные приборы с разной частотой каналов.
Магнитные поля
На фото показано, как вихревые электрические токи образуют магнитное поле в катушке. Катушки, в свою очередь, образуют вихревые токи в электропроводном материале, а также создавают свои собственные магнитные поля.
Магнитное поле вихревых токов
Дефектоскопия
Изменение напряжения на катушке будет влиять на материал, сканирование и исследование вихревых токов позволяет производить прибор для измерения поверхностных и подповерхностных разрывов. Несколько факторов будут влиять на то, какие недостатки могут быть обнаружены:
- Проводимость материала оказывает значительное воздействие на пути следования вихревых токов;
- Проницаемость проводящего материала также имеет огромное влияние из-за его способности быть намагниченным. Плоскую поверхность гораздо легче сканировать, чем неровную.
- Глубина проникновения имеет очень большое значение в контроле вихретоков. Поверхность трещины гораздо легче обнаружить, чем суб-поверхностного дефекта.
- Это же касается и площади поверхности. Чем меньше площадь – тем быстрее происходит образование вихревых токов.
Обнаружение контура дефектоскопом
Существуют сотни стандартных и специальных зондов, которые производятся для конкретных типов поверхностей и контуров. Края, канавки, контуры, и толщина металла вносят свой вклад в успех или провал испытаний. Катушка, которая расположена слишком близко к поверхности проводящего материала будет иметь наилучшие шансы на обнаружение разрывов. Для сложных контуров катушка вставляется в специальной блок и прикрепляется к арматуре, что позволяет пройти ток через неё и проконтролировать его состояние. Многие устройства требуют специальных формованных изделий зонда и катушки, чтобы приспособиться к неправильной форме детали. Катушка также может иметь специальную (универсальную) форму, чтобы соответствовать конструкции детали.
Вихревые токи
27 февраля 2015. Категория: Электротехника.
Рассматривая принцип действия генератора постоянного тока, можно заметить, что при его вращении в проводниках обмотки якоря, пересекающих магнитное поле, индуктируется электродвижущая сила (ЭДС). Так как и сам стальной якорь пересекает те же магнитные индукционные линии, то в нем, также как и в проводнике, должны индуктироваться токи.
Токи, которые индуктируются в металлических телах при пересечении их магнитными линиями, называются вихревыми токами, или токами Фуко.
Рисунок 1. Возникновение вихревых токов в сплошном стальном якоре электрической машины |
Рисунок 2. Изменение пути вихревых токов при разделении стального якоря электрической машины на изолированные участки. Стрелками показаны направления индукционных токов |
Рисунок 3. Схема устройства индукционной печи |
На рисунке 1 схематически изображен якорь, вращающийся в магнитном поле.
Вихревые токи Фуко в якоре, условно показанные пунктирными стрелками, проходя по телу якоря, будут нагревать его, на что затрачивается энергия.
Если не принять мер к уменьшению вихревых токов, они, сильно нагревая якорь, могут привести к порче изоляции его обмоток. Уничтожить совсем потери на вихревые токи нельзя, но уменьшить их можно и нужно.
Для уменьшения потерь на вихревые токи в трансформаторе, якоре генератора, электрическом двигателе, магнитопроводы собирают из отдельных тонких (0,35 – 0,5 мм) штампованных листов мягкой стали, расположенных по направлению линий магнитного потока и изолированных один от другого лаком или тонкой бумагой. Это делается для того, чтобы вследствие малого поперечного сечения каждого стального листа уменьшить величину проходящего через него магнитного потока, а стало быть уменьшить индуктируемые в нем ЭДС и ток.
Путь вихревых токов в теле якоря при разделении последнего на отдельные изолированные участки схематически показан на рисунке 2.
Чтобы еще больше ослабить вихревые токи, увеличивают удельное сопротивление стали путем добавления в нее около 4 % кремния. Такая сталь называется легированной.
Однако не всегда вихревые токи являются вредными; в некоторых случаях они находят и полезное применение. Так, например, эти токи используют для закалки стальных изделий токами высокой частоты, в работе индукционных электроизмерительных приборов, счетчиков и реле переменного тока (описанных ниже).
Применение вихревых токов находит свое применение в измерительных приборах. Часто в них устанавливают магнитоиндукционные тормозы (рисунок 4).
При колебаниях стрелки (рисунок 4, а) или при вращении диска (рисунок 4, б) они пересекают поле магнита М и в них индуктируются вихревые токи, которые по правилу Ленца имеют такое направление, что противодействуют вызвавшей их причине.
Таким образом, эти токи будут тормозить вращение диска и уменьшать колебания стрелки, быстро ее успокаивая.
Рисунок 4. Магнитоиндукционные тормозы
Вихревые токи – токи Фуко, что это такое и где они используются
Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи – это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.
yandex.ru
Краткое определение
Для начала давайте дадим определение озвученному явлению. Вихревые токи – это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.
И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.
Как открыли это явление
Изначально вихревые токи были зафиксированы в 1824 году ученым Д.А. Араго во время проведения следующего опыта:
На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.
Наблюдаемый эффект получил название – явление Араго
yandex.ru
По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей
, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.
И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.
А подробно описал вихревые токи уже экспериментатор Фуко
, именно поэтому второе название вихревых токов –токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.
Вихревые токи и их вред
Давайте вспомним, как выглядит обычный трансформатор.
Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?
Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.
yandex.ru
Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.
Как снижают потери
Данные потери могут быть описаны следующей формулой:
Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.
Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.
Полезное использование вихревых токов
Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.
Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.
yandex.ru Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.
В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.
Заключение
Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком
Спасибо за ваше внимание!
Токи Фуко
Определение 1
Токами Фуко или же вихревыми токами называют обладающие индукционной природой токи, которые возникают в массивных проводниках, находящихся в переменном магнитном поле.
Замкнутые цепи вихревых токов зарождаются в глубине самого проводника. Значение электросопротивления массивного проводника представляет из себя довольно малую величину, соответственно, токи Фуко могут приобретать большие значения.
Форма и свойства материала проводника, направление переменного магнитного поля и скорость изменения магнитного потока являются величинами, от которых зависит сила вихревых токов. Распределение токов Фуко в проводнике может быть крайне сложным.
Количество тепла, которое излучается за 1с токами Фуко пропорционально квадрату частоты изменения магнитного поля. Исходя из закона Ленца, можно заявить, что токи Фуко протекают по таким направлениям, чтобы своим воздействием устранить вызывающую их причину.
Таким образом, если проводник находится в движении в области магнитного поля, то он должен быть подвержен вызванному взаимодействием токов Фуко и магнитного поля сильному торможению.
Пример 1
Рассмотрим в качестве примера ситуацию с возникновением оков Фуко. Медный диск диаметром 5 см и толщиной 6мм падает в узком зазоре между полюсами электромагнита. Если электромагнит отключен, диск с высокой скоростью падает. Включим электромагнит. Поле должно быть довольно большим, около Т 0,5 Тл. Падение диска замедлится и будет похоже на движение в крайне вязкой среде.
Использование токов Фуко
Токи Фуко занимают важное место в процессе работы приводящегося в движение вращательного типа магнитным полем ротора асинхронного двигателя. Без них функционирование двигателя попросту будет невозможным
Токи Фуко применяют при демпфировании подвижных частей гальванометров, сейсмографов и целого списка иных устройств.
Так, на подвижную часть прибора устанавливается пластинка — проводник в виде сектора. Ее вводят в промежуток между полюсами сильного постоянного магнита. При движении пластинки, в ней возникают токи Фуко, что провоцирует торможение системы. Стоит учитывать, что торможение проявляется только в случае движения секторообразного проводника.
Соответственно, успокаивающий прибор такого рода не препятствует точному достижению системы состояния равновесия.
Внутри катушки распологают проводящее тело, в котором возникают разогревающие вещество до состояния плавления вихревые токи большой интенсивности. Так происходит плавление металлов в условиях вакуума, позволяющее получать материалы высокой чистоты.
При применении токов Фуко с целью обезгаживания производят прогрев внутренних металлических элементов вакуумных конструкций.
Проблемы, которые вызывают вихревые токи. Скин — эффект
Токи Фуко не всегда представляют собой полезное явление.
Определение 2
Вихревые токи — это токи проводимости, из-за чего они рассеивают часть энергии в виде джоулевой теплоты.
Такая энергия, к примеру, в роторе асинхронного двигателя, обычно изготавливаемого из ферромагнетиков, разогревает сердечники, чем ухудшает их характеристики. Чтобы избежать данного явления, сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора.
Пластины устанавливают таким образом, чтобы токи Фуко были направлены поперек них. В случае малой толщины пластин вихревые токи обладают небольшой объемной плотностью.
С появлением ферритов и веществ с большим магнитосопротивлением появилась возможность изготавливать сердечники сплошными.
Определение 3
Вихревые токи наводятся в проводниках, в которых протекают переменные токи. Причем токи Фуко всегда направлены таким образом, что ослабляют ток внутри провода и усиливают его около поверхности. Соответственно, изменяющийся с высокой частотой ток распределен по сечению провода неравномерно. Данное явление называется скин — эффектом (поверхностным эффектом).
По причине такого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой в качестве проводников применяют трубки.
Скин — эффект может быть использован для разогрева поверхностного слоя металла, что позволяет применять данное явление в процессе закалки металла.
Также стоит отметить, что, изменяя частоту поля, можно производить закалку на любой необходимой глубине.
Определение 4
RwR0=1+k43, при k
Способы уменьшения токов Фуко
Урок № 33. Вихревые токи.
В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции.
Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко)
, которые замыкаются в массе, образуя вихревые контуры токов.
Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.
Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.
Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим переменный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках ндуцированные токи могут оказываться достаточно большими, а нагрев сердечника — значительным.
Возниконвение токов Фуко (вихревых токов).
Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 — 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции.
Вихревые токи были подробно исследованы французским физиком Фуко (1819 — 1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
В качестве примера на рисунке показаны вихревые токи, индуктируемые в массивном сердечнике, помещенном в катушку, обтекаемую переменным током. Переменное магнитное поле индуктирует токи, которые замыкаются по путям, лежащим в плоскостях, перпендикулярных направлению поля.
Вихревые токи: а — в массивном сердечнике, б — в пластинчатом сердечнике.
Способы уменьшения токов Фуко
Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.
Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины.
Магнитопроводы всех машин и аппаратов переменного тока и сердечники якорей машин постоянного тока собирают из изолированных друг от друга лаком или поверхностной непроводящей пленкой (фосфатированных) пластин, штампованных из листовой электротехнической стали. Плоскость пластин должна быть параллельна направлению магнитного потока.
При таком делении сечения сердечника магнитопровода вихревые токи существенно ослабляются, так как уменьшаются магнитные потоки, которыми сцепляются контуры вихревых токов, а следовательно, понижаются и индуктируемые этими потоками э. д. с, создающие вихревые токи.
В материал сердечника также вводят специальные добавки, также увеличивающие его электрическое сопротивление. Для увеличения электрического сопротивления ферромагнетика электротехническую сталь приготовляют с присадкой кремния.
Шихтованный магнитопровод трансформатора
Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.
Лицендрат — это система переплетенных медных проводов, в которой каждая жила изолирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко.
Источник