Сравнение параметров автономных инверторов равной мощности
Важнейшим параметром является выходной ток инвертора. Он определяет загрузку полупроводниковых элементов, наиболее критичных к перенапряжениям и перегрузкам по току.
На рис. 5 представлена характерная форма кривых выходного тока для каждой из схем в режиме номинальной мощности. Эти кривые показывают, что в момент паузы (непроводящего состояния вентилей автономного инвертора) в нагрузке протекает постоянная составляющая входного тока инвертора. При этом во второй схеме она реверсируется в нагрузке, увеличивая амплитуду первой гармоники выходного тока, а в первой — четверть мостовой схеме — постоянная составляющая входного тока не меняет своего направления, но при этом можно наблюдать эффект удвоения выходной частоты автономного инвертора. Загрузка тиристоров по току в первой схеме существенно выше.
Рис. 5. Коммутирующие элементы и нагрузка автономных инверторов (выделены справа) и про те ка ю щий по ним выходной ток (слева)
Резонансный режим работы автономных инверторов характеризуется почти синусоидальным изменением тока в момент включения тиристора, поэтому скорость нарастания тока в тиристоре di/dt далека от критической величины, допускаемой высокочастотными тиристорами.
Начальная скорость нарастания тока тиристоров в момент их включения определяется выражением
На рис. 6 показаны графики токов обратных диодов исследуемых схем автономных инверторов при равной входной мощности. Длительность протекания тока диода определяет время восстановления управляющих свойств тиристоров. По этому параметру рассматриваемые схемы потенциально равноценны .
Рис. 6. Обратные диоды выделены справа) и токи диодов изображены слева) автономных резонансных инверторов
Другой параметр — величина среднего тока, протекающего через диоды, — существенно выше у четверть мостовой схемы. Однако по этому параметру диоды необходимо выбирать исходя из максимального значения при минимальном сопротивлении нагрузки. Это режим короткого замыкания нагрузки (КЗ), характерный для применения автономного инвертора в преобразователях частоты для индукционных установок ТВЧ. В этом отношении рассматриваемые схемы также равноценны.
Разновидности преобразователей
- специальные устройства для дома;
- высоковольтное и высокочастотное оборудование;
- бестрансформаторные и инверторные импульсные устройства;
- преобразователи постоянного напряжения;
- регулируемые аппараты.
К этой же категории электронных приборов относят преобразователи тока в напряжение.
Аппаратура для дома
С этим типом преобразовательных устройств рядовой пользователь сталкивается постоянно, поскольку в большинстве моделей современной техники имеется встроенный блок питания. К тому же классу относятся бесперебойные источники питания (БИП), имеющие встроенный аккумулятор.
В отдельных случаях бытовые преобразователи выполняются по двойной кольцевой (инверторной) схеме.
За счет такого преобразования от источника постоянного тока (аккумулятора, например), удается получить на выходе переменное напряжение стандартной величины 220 Вольт. Особенностью электронных схем является возможность получения на выходе чисто синусоидального сигнала постоянной амплитуды.
Регулируемые устройства
Эти агрегаты способны значение выходного напряжения и повышать его. На практике чаще встречаются аппараты, позволяющие плавно изменять пониженное значение выходного потенциала.
Классическим является случай, когда на входе действует 220 Вольт, а на выходе получается регулируемое постоянное напряжение величиной от 2-х до 30 Вольт.
Бестрансформаторные приборы
Бестрансформаторные (инверторные) агрегаты построены по электронному принципу, предполагающему применение отдельного модуля управления. В качестве промежуточного звена в них используется преобразователь частоты, приводящий сигнал на выходе к удобному для выпрямления виду. В современных образцах инверторного оборудования нередко устанавливаются программируемые микроконтроллеры, существенно повышающие качество управление преобразованием.
Высоковольтные устройства представлены уже описанными станционными трансформаторами, повышающими и понижающими передаваемое напряжение в нужных соотношениях.
При передаче энергии по высоковольтным линиям и последующей трансформации стремятся свести ее потери в ваттах к минимуму.
К этому же классу относятся устройства, формирующие сигнал для управления лучом в телевизионной трубке (кинескопе).
Технические данные и стоимость
Характеристики частотников на тиристорах зависят от вида, опций.
ТПЧ
Значения | ТПЧ 320 | 800 |
Мощность, кВт | 320 | 800 |
Наибольшая мощность, кВ-А | 640 | 1250 |
Частота, герц | 50 | 50 |
Входное напряжение, В | 380 | 500 |
Величина наибольшего постоянного тока, А | 630 | 1000 |
КПД, % | 94 | 94 |
Выходное напряжение, В | 800 | 1000 |
Преобразователь на тиристорах, работающий в условиях с влажностью и запыленностью (ЭПУ-1-1-3447Е УХЛ4).
Ток, А | 25 |
Наибольший ток нагрузки, А | 100 |
Входное напряжение, В | 380 |
Тиристорные преобразователи объединяют в комплексы по выпрямлению. У одного уравнителя при неисправности ремонтируют полностью все оборудование или демонтируют. У выпрямительного комплекса заменяют только тот механизм, который вышел из строя. Эти системы применяются в станках. Стоимость оборудования тиристорного преобразователя АВВ DCS400 на 2021 г составляет в районе ста рублей.
Цифровая система микропроцессоров управления ТПЧ 320
Микропроцессорные системы управления ТПЧ 320 регулируют, защищают и диагностируют. Она сформирована на плате с микросхемами и экраном через кабели. Эта система дает гарантию надежной работы, защищает от помех.
Каждому вентилю передается импульс. Информация выдается на экран панели. Можно получить информацию от механизмов цепи. Система управления обрабатывает много данных, передающихся по связи. Это такие данные:
- Мощность.
- Частота.
- Вес загрузки.
- Вес расплавленного металла.
- Время.
Комплектность шкафа ТПЧ 320:
- Выпрямитель.
- Система выравнивания мощности.
- Дроссель сглаживания.
- Диагностика.
- Контроль температуры.
- Контроль охлаждения.
- Блокировка дверей.
- Защита, перезапуск частотника при отключении линии питания.
Эксплуатационные условия ТПЧ 320
№ | Условие | Значение |
1 | Помещение с температурой | от +5° С до +35° С (УХЛ 4) и от +5° С до +45° С (ТС 4); |
2 | Высота не более: | 1000 м; |
3 | Влажность до: | 80% при +25° С (УХЛ 4) и 98 % при +35° С (ТС 4); |
4 | Среда: | Безопасная, без агрессивных газов |
5 | Защита ГОСТ 14254-80 | IP 55 |
6 | Уровень помех не выше: | ГОСТ 23450 — 79 |
Реверсивные тиристорные преобразователи Принцип работы и устройство
Watch this video on YouTube
Тиристорный преобразователь для плавного пуска высоковольтных асинхронных двигателей
ТПН (тиристорный преобразователь напряжения) успешно применяется для низковольтных до 1000 кВ двигателей и для высоковольтных электрических машин с напряжением от 3,6 до 10 кВ. Широкое распространение таких машин является следствием их энергоемкости
Их мощность соразмерна с мощностью некоторых трансформаторных подстанций, поэтому устройства плавного пуска с использованием тиристоров весьма важное решение
Рис. №2. Функциональная схема ПАД-В
Создание тиристорных преобразователей реализуется на базе концепции, главные аспекты которой – это:
- Использование ТПН типа ПАД-8 (плавный пуск АД).
- Блоки, из которых состоит силовая часть ТПН-В построены на основе тиристорного модуля (ВТМ) высокого напряжения.
- Применение цифровой системы управления на основе однокристального микроконтроллера RISC.
- Информационная часть состоит из специальных высоковольтных датчиков, которые реализуют качественное и точное измерение, кодирование сигнала и его передачу в системный контроллер по оптико-волоконному кабелю.
- Для формирования тока и напряжения высоковольтного двигателя применяется оригинальный алгоритм от преобразователя ПАД-В.
Рис. №3. Высоковольтный тиристорный модуль ВТМ.
Модуль состоит из двух встречно-параллельных тиристоров, оборудованных охладителями, выравнивающими резистором R2, оптоуправляемыми моделями, формирователями тиристорных импульсов (ФИ). Дополнят конструкцию: датчики напряжения, температуры и синхронизации с оптическим выходом.
Тиристорное управление двигателем постоянного тока
В приводах главного движения и подачи инструмента металлорежущих станков широко используются двигатели постоянного тока с независимым возбуждением, которые способны обеспечивать регулирование скорости вращения в широких пределах. Такой двигатель (рис. 2.36, а ) состоит из статора, на полюсах которого намотаны обмотки возбуждения (ОВ), и ротора, называемого якорем.
Ток возбуждения I
в, проходя по ОВ под действием напряженияU в, создает магнитный поток Ф. К якорю через щетки подводится напряжение якоряU я, создающее ток якоряI я. Протекая по виткам обмотки якоря, токI я, взаимодействуя с потоком Ф, создает вращающий моментМ вр
где K
— коэффициент, зависящий от конструкции двигателя (размеров числа витков обмоток и т.п.).
Рис.2.36. Схема подключения двигателя постоянного тока (а
); график, поясняющий принципы управления скоростью вращения двигателя (б )
При вращении двигателя в обмотке якоря наводится ЭДС Е
я, направленная согласно правилу Ленца встречно приложенному напряжениюU я и пропорциональная числу оборотов вала двигателяn :
где с
— коэффициент, зависящий от конструкции двигателя.
Для цепи якоря при равномерном вращении вала по второму закону Кирхгофа можно записать равенство
где R
я — активное сопротивление обмотки якоря, включая сопротивление контакта щетки—коллектор (в двигателях коллектором называют набор контактных площадок, через которые с щеток подается напряжение в обмотку вращающегося якоря).
Подставив в это равенство выражение Е
я и значение токаI я, полученное из выражения для вращающего момента, получим , откуда число оборотов двигателя равно
Рис. 2.37. Схема тиристорного регулятора скоростью вращения двигателя
Из полученной формулы очевидны два способа (две зоны) управления скоростью вращения двигателя (рис. 2.36, б
). В зонеI скорость изменяют от 0 до номинального значенияn ном, увеличивая напряжениеU я при неизменном значении магнитного потока Ф, а значит, и неизменном напряжении возбужденияU в. При достижении напряжениемU я номинального значения дальнейшее его увеличение невозможно, так как может привести к пробою изоляции. В то же время для быстрого перемещения, например, инструмента на холостом ходу или ускоренного вращения шпинделя необходимо увеличить скорость вращения двигателя в три — пять раз вышеn ном. Для этого используют зонуII , в которой при неизменном напряженииU яном уменьшают значение магнитного потока Ф с помощью соответствующего пониженияU в, а значит, и тока возбужденияI в. Заметим, однако, что в зонеII приходится мириться с соответствующим понижением и вращающего момента двигателя, т. е. нагружать двигатель меньшим моментом сопротивления, который он должен преодолевать своим вращающим моментом. Действительно, как это следует из формулы дляM вр, при уменьшении потока Ф вращающий момент снижается, а скомпенсировать его увеличением токаI я нельзя, так как это приведет к перегреву двигателя.
В выпускаемых промышленностью тиристорных преобразователях регулирование скорости вращения в зоне I
осуществляется применением двух управляемых мощных (до нескольких десятков киловатт) трехфазных выпрямителей (на рис. 2.37 они обведены пунктиром).
Один из трехфазных выпрямителей обеспечивает правое направление вращения двигателя, а другой — левое, изменяя полярность U
я на противоположное. Естественно, что эти выпрямители должны работать раздельно во избежание короткого замыкания между ними, что и обеспечивает схема управления выпрямителями, разрешая включение одного из них лишь через несколько миллисекунд после отключения другого. Схемы управления тиристорами выполнены по принципу, рассмотренному в параграфе 2.9 и на рис. 2.33.
Для управления скоростью вращения в зоне II
используется однофазная мостовая схема тиристорного выпрямителя, обеспечивающая питание обмотки возбуждения ОВ. Схема позволяет лишь уменьшать значение тока возбужденияI в, сохраняя его полярность. Схема управления тиристорами мостовой схемы также выполнена по принципу, рассмотренному в параграфе 2.9 и на рис. 2.33.
Источник
Тиристорный преобразователь для плавного пуска высоковольтных асинхронных двигателей
ТПН (тиристорный преобразователь напряжения) успешно применяется для низковольтных до 1000 кВ двигателей и для высоковольтных электрических машин с напряжением от 3,6 до 10 кВ. Широкое распространение таких машин является следствием их энергоемкости. Их мощность соразмерна с мощностью некоторых трансформаторных подстанций, поэтому устройства плавного пуска с использованием тиристоров
весьма важное решение
Рис. №2. Функциональная схема ПАД-В
Создание тиристорных преобразователей реализуется на базе концепции, главные аспекты которой – это:
- Использование ТПН типа ПАД-8 (плавный пуск АД).
- Блоки, из которых состоит силовая часть ТПН-В построены на основе тиристорного модуля (ВТМ) высокого напряжения.
- Применение цифровой системы управления на основе однокристального микроконтроллера RISC.
- Информационная часть состоит из специальных высоковольтных датчиков, которые реализуют качественное и точное измерение, кодирование сигнала и его передачу в системный контроллер по оптико-волоконному кабелю.
- Для формирования тока и напряжения высоковольтного двигателя применяется оригинальный алгоритм от преобразователя ПАД-В.
Рис. №3. Высоковольтный тиристорный модуль ВТМ.
Модуль состоит из двух встречно-параллельных тиристоров, оборудованных охладителями, выравнивающими резистором R2, оптоуправляемыми моделями, формирователями тиристорных импульсов (ФИ). Дополнят конструкцию: датчики напряжения, температуры и синхронизации с оптическим выходом.
Схемные решения преобразователей на основе тиристоров
Особенностью схем на тиристорах является то, что они рассчитаны на работу с определенным характером нагрузки.
Последовательный и параллельный инверторы тока
Данный тип преобразователей имеет дополнительный конденсатор, включенный последовательно или параллельно нагрузке. Назначение конденсатора – обеспечение надежного запирания тиристоров, не участвующих в прохождении тока по силовой цепи. Для стабилизации тока через нагрузку вход инвертора тока содержит индуктивность, которая в идеальном случае должна стремиться к бесконечности.
Комбинированные схемы
Комбинированная последовательно-параллельная схема содержит два конденсатора и позволяет улучшить нагрузочные характеристики устройства. В частности, такая схема отличается большей устойчивостью при работе с малой нагрузкой.
Последовательная, параллельная и комбинированная схемы
Преобразователь напряжения Мак-Мюррея
Схема Мак-Мюррея включает в себя контур LC. Данный контур образуется из соединения конденсатора и катушки индуктивности через открытый в данный момент тиристор, закрывая противоположный.
Схема Мак-Муррея
Данное решение позволяет питать индуктивную нагрузку, например, устройства, в которых производится индукционный нагрев или сварка металлических конструкций.
Последовательный резонансный инвертор
В подобной схеме емкость конденсатора и индуктивность подобраны таким образом, чтобы на частоте преобразования LC контур находился в резонансе. Таким образом, управление тиристорами будет происходить на резонансной частоте.
Преобразование может вестись на более высокой частоте, что улучшает характеристики схемы из-за лучших условий переключения ключевых элементов.
Преобразователь частоты на логических элементах
Современные асинхронные двигатели управляются весьма сложно. Дело в том, что пуск мощного асинхронного двигателя сопряжен со значительными токовыми перегрузками. Мощный вращающий момент может вывести из строя подшипники и опоры, на которых установлены двигатели.
Резкое отключение двигателя может привести к перенапряжению и к серьезным электрическим авариям. Поэтому, на сегодняшний день наиболее перспективными системами управления двигателями являются частотные преобразователи. Путь, к которому шел частотный преобразователь к цифровому варианту, довольно сложен. В современных устройствах была проблема в том, чтобы выходные каскады были мощными. Не было мощных транзисторов. Сейчас появились IGBT транзисторы или мощные транзисторы с изолированным затвором.
Рассмотрим преобразование однофазной цепи в трехфазную.
Это структурная схема простейшего преобразователя. Он состоит из генератора тактовых импульсов, частотой которого можно управлять. Собран он на простейших логических элементах. Включенных в режим логических элементов нет. Три логических элемента. Конденсатор и резистор задают постоянную величину времени, то есть, частоту выдачи импульсов. Эти импульсы поступают на счетчик Джонсона, который является и счетчиком, и дешифратором, преобразующим выходной сигнал в сигнал с одним импульсом на выходе.
Предусмотрено так, что импульсы проходят последовательно. Для того, чтобы получить трехфазную систему, десятку импульсов разделили на последовательность до шести импульсов. При этом окончание седьмого импульса завершает работу счетчика, установку его в нулевое состояние. Импульс подает команду обнуления счетчика, отсчет начинается с нуля. Выходы этих элементов, в данном случае дешифратора, присоединены к трем элементам, которые являются коммутирующими. Эти коммутирующие элементы, которые управляют работой двухтактных транзисторных включений, составляют основу выхода.
На выходе появляется напряжение с частотой, которую мы зададим на этом генераторе. Тактовые импульсы поступают на счетчик Джонсона с дешифратором, запускают логические элементы. Если будет на входе единица, которая поступает на два мощных транзистора, включенных по схеме моста, то пары транзисторов осуществляют коммутацию направления тока в обмотке двигателя вправо и влево. В результате этого с ростом регулирования частоты вращения будет плавно увеличиваться частота переключения выходного напряжения в обмотке, что приведет к росту средней частоты в двигателе и росту числа его оборотов.
Если мы рассмотрим систему как полученную трехфазную систему переменного тока, то можем получить на выходе трехфазный переменный ток. Он будет прямоугольной формы. Чтобы получить импульсы, близкие к гармоническим колебаниям, необходимо применить L или C фильтры для получения полноценного сигнала. Если мы имеем дело с постоянным током, то данный преобразователь может получить из него трехфазный переменный ток. Поэтому наш частотный преобразователь, который питается постоянным током, может работать от однофазного выпрямителя.
В мощных приводах не подходят к применению транзисторы. Поэтому вместо них используют тиристорные частотники. На малой частоте вращения труднее удерживать момент, так как приводы с жесткими характеристиками. Привод насоса происходит по системе склеивания синуса. Выходная частота меньше 50 герц.
Принцип действия и конструктивные особенности
Чтобы преобразовать нагрузку применяют тиристорный преобразователь цепей высокого напряжения на основе IGBT. Частотный преобразователь на тиристорах – это прибор преобразования тока, регулировки его параметров и уровня тока. Частотным преобразователем можно выровнять значения параметров приводов на электромоторах: угол, обороты вала при запуске и другие.
Схема тиристорного выравнивателя.
Для мотора постоянного тока используют преобразователь на тиристорах. Достоинства этого прибора позволили создать ему широкое применение. К преимуществам относятся:
- КПД (95%) у марки ПН-500.
- Область контроля: мотора от малых мощностей до мегаватт.
- Может выдерживать значительные импульсы нагрузок запуска двигателя.
- Долговечная и надежная эксплуатация.
- Точность.
Недостатки имеются и у этой системы. Мощность находится на низшем уровне. Это проявляется при точном регулировании процесса производства. В качестве компенсации используют дополнительные устройства. Такой частотный преобразователь не может работать без помех. Это видно при эксплуатации чувствительных приборов электрооборудования и радиотехнических устройств.
Составные части:
- Реактор в виде трансформатора.
- Блоки выпрямления тока.
- Реактор для сглаживания преобразования.
- Перенапряжение не воздействует на защиту.
Преобразователи (2017 г) подключаются через реактор. Трансформатор служит для согласования звена напряжения выхода и входа, выравнивания между ними напряжения. Схема электрического соединения включает в себя реактор для сглаживания. Частотный преобразователь имеет схему, в которой есть сглаживающий реактор.
Частотник пропускает нагрузку. Нагрузка идет в блоки выпрямителя в выходное звено. Чтобы выровнять питание нескольких устройств подключают индукционные потребители на специальных шинах.
Преобразователи частоты бывают двух типов – высокочастотные и низкочастотные. Подбор нужной модели осуществляется по необходимым параметрам цепей электроэнергии. В 3-фазных станках тип подключения иной. 1-фазный ток переносит воздействия, но КПД теряется на преобразовании 3-фазного тока.
Система применяется в плавильном производстве, контроле подъемно-транспортных устройствах, сварочном производстве. Такой принцип работы нагрузки реализовывает систему двигателя с генератором. На наименьших оборотах двигателя происходит регулировка оборотов шпинделя в широком диапазоне, настройка разных характеристик привода мотора.
Принцип действия и конструктивные особенности
Чтобы преобразовать нагрузку применяют тиристорный преобразователь цепей высокого напряжения на основе IGBT. Частотный преобразователь на тиристорах – это прибор преобразования тока, регулировки его параметров и уровня тока. Частотным преобразователем можно выровнять значения параметров приводов на электромоторах: угол, обороты вала при запуске и другие.
Схема тиристорного выравнивателя.
Для мотора постоянного тока используют преобразователь на тиристорах. Достоинства этого прибора позволили создать ему широкое применение. К преимуществам относятся:
- КПД (95%) у марки ПН-500.
- Область контроля: мотора от малых мощностей до мегаватт.
- Может выдерживать значительные импульсы нагрузок запуска двигателя.
- Долговечная и надежная эксплуатация.
- Точность.
Недостатки имеются и у этой системы. Мощность находится на низшем уровне. Это проявляется при точном регулировании процесса производства. В качестве компенсации используют дополнительные устройства. Такой частотный преобразователь не может работать без помех. Это видно при эксплуатации чувствительных приборов электрооборудования и радиотехнических устройств.
Составные части:
- Реактор в виде трансформатора.
- Блоки выпрямления тока.
- Реактор для сглаживания преобразования.
- Перенапряжение не воздействует на защиту.
Преобразователи (2017 г) подключаются через реактор. Трансформатор служит для согласования звена напряжения выхода и входа, выравнивания между ними напряжения. Схема электрического соединения включает в себя реактор для сглаживания. Частотный преобразователь имеет схему, в которой есть сглаживающий реактор.
Частотник пропускает нагрузку. Нагрузка идет в блоки выпрямителя в выходное звено. Чтобы выровнять питание нескольких устройств подключают индукционные потребители на специальных шинах.
Преобразователи частоты бывают двух типов – высокочастотные и низкочастотные. Подбор нужной модели осуществляется по необходимым параметрам цепей электроэнергии. В 3-фазных станках тип подключения иной. 1-фазный ток переносит воздействия, но КПД теряется на преобразовании 3-фазного тока.
Система применяется в плавильном производстве, контроле подъемно-транспортных устройствах, сварочном производстве. Такой принцип работы нагрузки реализовывает систему двигателя с генератором. На наименьших оборотах двигателя происходит регулировка оборотов шпинделя в широком диапазоне, настройка разных характеристик привода мотора.
Разработка
Электрическая схема тиристорный преобразователь-двигатель (к примеру, КТЭ) для плавного переключения может быть двух видов:
- Однофазной;
- Многофазной.
В зависимости от типа исполнения варьируются соотношения расчетных единиц и принципы работы преобразователя.
Фото — нулевая схема трехфазного преобразования
На этом чертеже схематически показано изменение электрической энергии при работе тиристорного преобразователя в режиме выпрямителя и инвертора. В то же время, для мостовой схемы можно сделать такую же диаграмму, но только состоящую из двух нулевых. Именно она наиболее часто используется при проектировании преобразователя для станочного оборудования. Это происходит из-за того, что исходное фазовое напряжение в ней в два раза превышает фазовой напряжение (Udo) в нулевой схеме работы.
Фото — питание
Однофазная схема используется для контроля питания и работы привода машин с высоким индуктивным сопротивлением. Она работает в пределах мощности от 10 кВт до 20, намного реже – при больших мощностях. К примеру, подойдет для электрической печи, домашнего станка.
Фото — однолинейная схема
Трехфазная используется для оборудования, где требуется от 20 кВт для работы. К примеру, для синхронных приводов, двигателя крана и экскаватора. Еще одной популярной многофазной схемой контроля является шестифазная (Кемрон). Её проект предусматривает использование в конструкции уравнительного реактора, который направлен на контроль низкого напряжения и высокого тока. Этот силовой электрический прибор пропускает и преобразовывает электрическую энергию параллельным путем, а не последовательным (как большая часть аналогичных устройств). Его более сложно разработать своими руками, но степень надежности и эффективности значительно больше, нежели у однофазного тиристорного преобразователя. Но такой реверсивный контроллер имеет серьезный недостаток – его КПД менее 70 %.
Своими руками можно сделать собственный преобразователь, но многое зависит от используемой базы. Внизу дана схема, разработанная на основе Micro-Cap 9. Главной особенностью этой модели является необходимость в совместном моделировании различных узлов.
Фото — Схема тиристорного уравнителя
Видео: как работают тиристорные преобразователи
1.4.Выбор реакторов для ограничения уравнительных токов при согласованном управлении преобразовательными группами.
Требуемая индуктивность уравнительного реактора, исходя из задонного допустимого значения уравнительного тока может быть определена из соотношения:
Где U2М =U2Ф.М – амплитуда фазного напряжения для трехфазной встречно-паралельной схеме, для трехфазной и шестифазной нулевой перекрестной схемы:
U2М =U2Л.М – амплитудалинейного напряжения для трехфазноймостовой перекрестной схемы:
Iур – действующее значение уравнительного тока в большинстве случаев его можно принять равным 10% от номинального тока электродвигателя:
Кд – коэффициент действующего значения Iур, определяемый видом преобразователя и диапозоном изменения угла регулирования α.
Величина Кд определяется на основании кривых (рис 2.8) в методическом пособияи.
Iур = 10% Idн = 12,3А
U2М = 75В
WС = 2πfС = 2*3,14*50 = 314
Кд = 0,38
Выбираем реактор ФРОС 250/0,5
Iн = 250A
L = 6.5Гн
R = 0,018 Ом
Применение многоуровневых инверторов [ править | править код ]
Многоуровневые инверторы включают в себя матрицу силовых полупроводников и конденсаторных источников напряжения, выход которых генерирует напряжения со ступенчатыми формами сигналов. Коммутация переключателей позволяет добавлять напряжения конденсатора, которые достигают высокого напряжения на выходе, в то время как силовые полупроводники должны выдерживать только пониженные напряжения. На рисунке справа показана принципиальная схема одного фазового отрезка инверторов с различным количеством уровней, для которых действует мощность полупроводников представленных идеальным выключателем с несколькими положениями.
Двухуровневый инвертор генерирует выходное напряжение с двумя значениями (уровнями) относительно отрицательного терминала конденсатора , в то время как трехуровневый инвертор генерирует три напряжения и так далее.
Представим, что m является количеством шагов фазового напряжения относительно отрицательного терминала инвертора, тогда количество шагов в напряжении между двумя фазами загрузки k,
k = 2 m + 1 <displaystyle k=2m+1>
и количество шагов p в фазовом напряжении трехфазной нагрузки в соединении
p = 2 k − 1 <displaystyle p=2k-1>
Имеется три различные топологии для многоуровневых инверторов: зафиксированная на диод (нейтрально зафиксированная) ; зафиксированная на конденсатор (навесные конденсаторы); и каскадно-расположенный многоэлементный с отдельными источниками постоянного тока .Кроме того, несколько модуляций и стратегий управления были разработаны или приняты для многоуровневых инверторов включая следующее: многоуровневая синусоидальная модуляция длительности импульса (PWM), многоуровневое выборочное гармоническое устранение и векторная пространством модуляция (SVM).
Основные положительные стороны многоуровневых инверторов заключаются в следующем:
1) Они могут генерировать выходные напряжения с чрезвычайно низким искажением и понизить dv/dt.
2) Они тянут входной ток с очень низким искажением.
3) Они генерируют меньшее напряжение общего режима (CM), таким образом уменьшая стресс в моторных подшипниках. Кроме того, с помощью сложных методов модуляции, напряжения CM могут быть устранены.
4) Они могут работать с более низкой частотой переключения.
Топология каскадных многоуровневых инверторов
Различная топология преобразователя представленная здесь, основывается на последовательном соединении однофазных инверторов с отдельными источниками постоянного тока. Рисунок справа показывает цепь электропитания для одного участка фазы девятиуровневого инвертора с четырьмя клетками в каждой фазе. Получающееся фазовое напряжение синтезируется добавлением напряжений, сгенерированных различными участками.
Каждый однофазный инвертор полного моста генерирует три напряжения на выводе: + Vdc, 0, и — Vdc. Это стало возможным путем подключения конденсаторов последовательно с ac стороной через четыре выключателя питания. Получающееся выходное колебание напряжения переменного тока от-4 Vdc до 4 Vdc с девятью уровнями и ступенчатой формой сигнала, почти синусоидальной, даже без применения фильтров.
Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.
Все импульсные преобразователи можно разделить на следующие группы:
- Повышающие, понижающие, инвертирующие;
- Со стабилизацией и без неё;
- С гальванической развязкой и без неё;
- Регулируемые и нерегулируемые;
- Обладающие различным диапазоном входного и выходного напряжения.
Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.