Как определить, где анод, а где катод?
При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.
Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.
На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.
Рис. 1. Электролиз
При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.
Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис. 2
Гальванический элемент
2. Гальванический элемент
Рис. 2. Гальванический элемент
Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.
Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления
Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места
То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.
При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.
На назначение электродов указывает:
- форма корпуса (рис. 3);
- длина выводов (для светодиодов) (рис. 4);
- метки на корпусах приборов или знака анода;
- различная толщина выводов диода.
Рис. 3. Диод
Рис. 4. Электроды светодиода Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.
Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).
Рис. 5. Транзистор на схемах и его электроды
Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.
Неисправности печатной платы
Сильная коррозия печатной платы из-за негерметичного никель-кадмиевого аккумулятора на печатной плате
Печатные платы (ПП) уязвимы к воздействиям окружающей среды; например, следы подвержены коррозии и могут быть неправильно вытравлены, оставляя частичные шорты, а переходные отверстия могут быть недостаточно покрыты металлическим покрытием или заполнены припоем. Следы могут треснуть под действием механических нагрузок, что часто приводит к ненадежной работе печатной платы. Остатки припоя могут способствовать коррозии; материалы из других материалов на печатных платах могут вызвать утечки электричества. Полярные ковалентные соединения могут притягивать влагу, как антистатики , образуя тонкий слой проводящей влаги между следами; ионные соединения, такие как хлориды, способствуют коррозии. Ионы щелочных металлов могут мигрировать через пластиковую упаковку и влиять на работу полупроводников. Остатки хлорированных углеводородов могут гидролизоваться и выделять коррозионные хлориды; это проблемы, которые возникают спустя годы. Полярные молекулы могут рассеивать высокочастотную энергию, вызывая паразитные диэлектрические потери .
Выше температуры стеклования печатных плат матрица смолы размягчается и становится восприимчивой к диффузии загрязняющих веществ. Например, полигликоли из флюса припоя могут проникать в плату и увеличивать поглощение ею влаги с соответствующим ухудшением диэлектрических и коррозионных свойств. Многослойные подложки из керамики страдают многими из тех же проблем.
Проводящие анодные нити (CAF) могут расти внутри плат вдоль волокон композитного материала. Металл попадает на уязвимую поверхность обычно из-за покрытия переходных отверстий, а затем мигрирует в присутствии ионов, влаги и электрического потенциала; Повреждение сверления и плохое соединение стекло-смолы способствуют таким отказам. Формирование CAF обычно начинается с плохой связи стекло-смола; затем слой адсорбированной влаги обеспечивает канал, по которому мигрируют ионы и продукты коррозии. В присутствии хлорид-ионов осажденный материал представляет собой атакамит ; его полупроводниковые свойства приводят к увеличению утечки тока, ухудшению диэлектрической прочности и коротким замыканиям между дорожками. Поглощенные гликоли из остатков флюса усугубляют проблему. Разница в тепловом расширении волокон и матрицы ослабляет связь при пайке платы; бессвинцовые припои, требующие более высоких температур пайки, увеличивают возникновение CAF. Помимо этого, CAF зависят от поглощенной влажности; ниже определенного порога они не возникают. Может произойти расслоение для разделения слоев платы, растрескивание переходных отверстий и проводников, что приведет к появлению путей для коррозионных загрязнителей и миграции проводящих частиц.
Применение
Электроды в качестве анода и катода наиболее часто применяются:
- в электрохимии;
- вакуумных электронных приборах;
- полупроводниковых элементах.
Рассмотрим в общих чертах сферы применения анодов и катодов.
В электрохимии
В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.
Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.
В вакуумных электронных приборах
Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.
Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.
Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.
В полупроводниковых приборах
Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.
При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.
Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.
Как определить, где анод, а где катод?
При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.
Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.
На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.
Рис. 1. Электролиз
При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.
Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис. 2
Гальванический элемент
2. Гальванический элемент
Рис. 2. Гальванический элемент
Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.
Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления
Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места
То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.
При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.
На назначение электродов указывает:
- форма корпуса (рис. 3);
- длина выводов (для светодиодов) (рис. 4);
- метки на корпусах приборов или знака анода;
- различная толщина выводов диода.
Рис. 3. Диод
Рис. 4. Электроды светодиода Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.
Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).
Рис. 5. Транзистор на схемах и его электроды
Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.
С помощью техдокументации
Другие способы определения выводов можно поискать в техдокументации на элементы – в справочниках или онлайн-источниках. Для этого как минимум необходимо знать тип светодиода или его производителя. В документации может содержаться информация о габаритах и цоколевке прибора.
Но даже если данных сведений в спецификации не найдется, напрасно усилия не пропадут. Техдокументация может стать источником информации о предельных параметрах электронного прибора. Эти знания помогут правильно выбрать режим работы, а также не допустить выхода светодиода из строя при проверке расположения выводов.
Подробно о полярностях светодиодных ламп
Несоблюдение полярности и неправильное включение может привести к поломке светодиода Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Как определить, где плюс и минус
Практически невозможно выявить полярность диода визуально. Если ошибиться, то схема не будет работать. Расположение полюсов у диода может определяться такими способами:
- визуально;
- с помощью мультиметра;
- по технической документации;
- путем монтажа по простой схеме.
Определяем зрительно
Чтобы точно отличать катод от анода, производитель диодных лампочек стал делать катодный контакт короче анодного. Также возле катода имеется маленькая буква «к». Но понять, где что, по длине проволочек возможно только в новых диодах, в старых, уже использованных, деталях проволочки могут быть обломаны. Некоторые производители возле катода ставят точку. Если пустить ток обратно, произойдет пробой и аппарат придется выбросить.
Удобно определять полярность у диодов цилиндрической формы. Это можно сделать по таким признакам. В корпусе имеются электроды с разной площадью. У катода величина электрода намного больше, чем у анода. Выход с большим электродом минусовой.
Легче всего полярность определяется у мощных диодов. Они большие и на их корпус легко можно нанести плюс и минус.
Используем мультиметр
Более надежный способ – провести тест с помощью мультиметра. В приборе выбирается режим работы «омметр». Теперь мультиметр может измерять уровень сопротивления. Прибор имеет 2 ножки, их необходимо поднести к плюсу и минусу. Черный соприкасается с минусом, красный – с плюсом.
Если контакты диода определены правильно, то прибор покажет 1,7 кОм. При ошибке прибор выдаст показатель намного выше. Если сопротивление будет меньше, чем 1,7, то диод испорчен и его необходимо заменить. В некоторых таксировщиках есть специальный режим, позволяющий проверять светодиоды. Данный способ проверки срабатывает только с красными и зелеными диодами.
Синие и белые отреагируют, только если подать на них напряжение в 3 вольта. Тестировать эти лампочки можно только с помощью специальных мультиметров типа DT830 .
Интересное видео по теме:
Путем подачи питания
В тех случаях, когда у вас отсутствует мультиметр, плюс и минус у светодиода выявляют простым, но не менее действенным способом. Для теста нужны батарейка и резистор. Батарейку можно заменить аккумулятором. Резистор в данном случае будет защищать элемент от пробоя. Некоторые умельцы используют специальную панельку, ее предназначение состоит в том, чтобы проверять исправность транзисторов.
В ситуации, когда ни на глаз, ни мультиметром нельзя определить анод и катод диода, прибегают к еще одному методу. Диод подключают кратковременно в электрическую схему. Затем все просто. Если лампочка загорелась, то выходы определены правильно, если нет – все останется без изменений.
По технической документации
На многих схемах светодиод рисуют как кружок с треугольником внутри, причем катод отображается как минус, анод обозначают плюсом. В схемах обязательно обозначаются все выводы для того, чтобы тот, кто будет собирать данную схему, знал, как диод подключать к цепи.
Определение полярности светодиода по техническим документам всегда просто, но не всегда на руках они есть. Особенно когда данные изделия приобретаются пользователями через магазины. Но есть еще один способ, для этого необходимо знать номер светодиода. В интернете много информации не только по устройству диодов. Там имеются подробные схемы и чертежи с обозначением всех параметров. В этих схемах будет обязательно указано расположение диодов.
Обозначение в электрохимии и цветной металлургии
Понятие анодов в электролитических процессах применимо в отношении положительно заряженных электродов. Электролиз, с помощью которого выделяются или очищаются различные химические элементы, – это влияние электрического тока на электролит. Электролитом выступают растворы солей или кислот. Другим электродом, участвующим в этой реакции, выступает катод.
Внимание! На отрицательно заряженном катоде (К) осуществляется реакция восстановления, на аноде (А) – процесс окисления. При этом «А» может частично разрушаться, участвуя в очищении металлов от нежелательных добавок. В металлургической промышленности аноды используют при нанесении защитных слоёв на продукт электрохимическим методом (гальваника) или электро-рафинированием
Электрическое очищение позволяет растворять на «А» черновой металл (с примесями) и осаждать его на «К» уже в очищенном виде
В металлургической промышленности аноды используют при нанесении защитных слоёв на продукт электрохимическим методом (гальваника) или электро-рафинированием. Электрическое очищение позволяет растворять на «А» черновой металл (с примесями) и осаждать его на «К» уже в очищенном виде.
Ряд часто применяемых анодов – изготовленные из металлов:
- цинка;
- меди;
- никеля;
- кадмия;
- свинцовые (сплав свинца с сурьмой);
- серебра;
- золота;
- платины.
Никелирование, оцинкование и прочее нанесение защитных или эстетически востребованных покрытий на изделия выполняются в основном из недрагоценных металлов.
С помощью «А» из драгметаллов повышают электропроводность компонентов электрических изделий и наносят слои благородных металлов на ювелирные украшения.
К сведению. Осаждаемый на катоде чистый металл также называют «катодом». Например, чистая медь полученная таким образом именуется «медный катод». Дальше её используют для изготовления медной фольги, проволоки и прочего.
Рафинирование металлов
Что представляет собой устройство
Современный диод вакуумного типа представляет собой баллон, выполненный из металлокерамики или стекла, лишенный воздуха. Их этого баллона выкачивают воздух до давления, находящегося на уровне 10-6 — 10-7 мм рт. ст. Отсюда и название данного элемента электросхем.
Строение диод вакуумного типа
Внутри такой баллон размещены два электрода. Одним из них является катод. Он имеет вид металлического вертикального цилиндра, который покрыт слоем оксида щелочно-земельных металлов (кальция, стронция, бария). Благодаря такому напылению данный элемент получил название оксидный катод.
Катод внутри содержит изолированный проводник, нагреваемый переменным или постоянным током. При нагревании, катод испускает электроны, которые движутся и достигают второго элемента вакуумного диода – анода. Анод имеет вид овального или круглого цилиндра. Он с катодом имеет общую ось. Схема диода вакуумного типа имеет следующий вид.
Схема диода вакуумного типа
Кроме вакуумного диода существует еще такое понятие, как электровакуумный диод. Под собой электровакуумный диод подразумевает двухэлектродную вакуумную электронную лампу. Ее строение аналогично диоду вакуумного типа. По сути это одно и тоже. Здесь катод представляет собой W-образную или прямую нить. Он, в процессе работы такой лампы, нагревается до определенной температуры. В результате нагрева возникает термоэлектронная эмиссия. В ходе подачи на анод отрицательного напряжения относительно катода, электроны возвращаются обратно на катод. Когда на анод подается положительное напряжение, часть из эмитированных электронов начинает двигаться в нему. В результате возникает ток. В результате своей работы вакуумные диоды и их аналоги способны на выпрямление приложенного к ним напряжения. Таким основным своей свойством обладают вакуумные выпрямители, поэтому они используются в качестве детекторов сигналов высокой частоты и выпрямления переменного тока. Такое устройство характерно для всех изделий подобного типа. При этом данное устройство и определяет основные характеристики изделия, а также то, какое применение оно будет иметь.
Анод в электрохимии
При процессах электролиза (получение элементов из солевых растворов и расплавов под действием постоянного электрического тока), анод — электрически положительный полюс, на нём происходят окислительно-восстановительные реакции (окисление), результатом которых, в определённых условиях, может быть разрушение (растворение) анода, что используется, к примеру, при электрорафинировании металлов.
Аноды — множественное число слова «анод»; эта форма применяется преимущественно в металлургии, где применяются аноды для гальваники, используемые для нанесения на поверхность изделия слоя металла электрохимическим способом, либо для электрорафинирования, где металл с примесями растворяется на аноде и осаждается в очищенном виде на катоде. Основное распространение получили аноды из цинка (бывают сферические, литые и катаные, чаще используются последние), никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия (применение которых сокращается из-за экологической вредности), бронзы, олова (применяются при производстве печатных плат в радиоэлектронной промышленности), сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.
Кроме принудительной организации полезных электрохимических процессов, аноды применяются и для защиты от последствий нежелательных, побочных электрохимических процессов.
Электролиз
Катод и анод в электрохимии являются двумя полюсами приложенного к солевым растворам или расплавам постоянного электромагнитного напряжения. При возникновении тока от избытка электронов анод начинает разрушаться, т.е. сами положительно заряженные атомы вещества будут попадать в соляной раствор (окружающую среду) и переноситься на катод, где оседать в очищенном виде. Этот процесс носит название гальванического. С помощью гальваники покрывают тонким слоем цинка, меди, золота, серебра и других металлов различные изделия.
Что такое катод и каковы задачи, которые он выполняет в электролизе? Это можно понять при выполнении следующих действий: если сделать анод из бронзы или олова, то на катоде получится печатная плата, покрытая тонким слоем меди или олова (используется в радиоэлектронной промышленности). Этим же способом получают позолоченные ювелирные украшения, омедненные и даже позолоченные алюминиевые наконечники для электротехники в целях повышения электропроводности.
Ответы на вопросы о том, что такое анод и катод, при электролизе очевидны: анод в результате протекания постоянного тока через соляной раствор разрушается, а катод принимает на себя анодный материал. Даже термин такой возник в среде гальваников – «анодирование катода». Физического смысла он не несет, но фактическую суть вопроса отображает прекрасно.