Acϟdс. понимание сварочного тока и полярности

Полярность при работе полуавтоматом

Отличительная особенность полуавтоматических аппаратов – подача присадочной проволоки в автоматическом режиме, с фиксированной скоростью. Понятно, что в этом случае шовный валик получается аккуратным, ровненьким, ведь металл проплавляется равномерно. Для генерации тока используют инвертор – компактный преобразователь с электронной начинкой, дополнительными функциями, облегчающими процесс сварки.

Специфика автоматической сварки предусматривает несколько режимов работы оборудования:

  • на открытом воздухе с присадкой, образующей шлаковый слой;
  • с использованием проволоки, содержащей флюсы;
  • в среде защитного газа, покрывающего рабочую зону.

Подключение клемм зависит от вида режима. Прямая подходит для обычной порошковой проволоки. На обратную переходят:

  • применяя защитный газ, ионизированные молекулы отлично пропускают электроны, дуга быстро разгорается;
  • используя флюсовую присадку, тепло концентрируется на кончике наплавки, флюс выгорает полностью, формируется однородный диффузный слой.

Работая с современным сварочным оборудованием, при обратном подключении клемм можно скорректировать стабильность горения дуги.

Зная особенности работы на переменном токе, можно подобрать режим сварки под размер заготовок, тип металла. Постоянный ток дает большие возможности, меняя положение полюсов, сварщик контролирует положение высокотемпературной области дуги. Смещая положение анодного пятна, получают прочные соединения на любых заготовках.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества

Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать

Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

Будет интересно Формула расчёта сопротивления конденсатора

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.


Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.


Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Будет интересно Сколько стоят керамические конденсаторы?

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.


Полярный и неполярный конденсатор

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Основные типы и характеристики розеток

На самом деле основные характеристики — это не то, какой в розетке постоянный или переменный ток, главным является уровень защиты и контактная группа, то есть форма вилки (штепселя), а также допустимые силы токов. Давайте, перечислим, что мы должны учитывать, выбирая розетку:

  1. Место монтажа (скрытая установка, внешняя, внутри, снаружи на улице и т.д.).
  2. Собственно форма розетки и вилки, а также защита от детей.
  3. Параметры сети и нагрузки на линию там, где будет работать розетка.

Если Вы располагаете розетку скрытого монтажа в сухом помещении, но невысоко от пола, помните о том, что это риск попадания воды (при мытье полов и пр.). Поэтому такие розетки должны иметь повышенный уровень защиты.

Все эти свойства описывает маркировка, а понимание как её прочитать никогда не будет лишним. Но перед этим для справки приведём условное обозначение розеток и выключателей на чертежах и принципиальных схемах —

Давайте расшифруем, что написано на таких приборах на примере такой аббревиатуры.


По степени защиты розетки отличаются IP-кодом

. За IP следуют две цифры. Первая (от 0 до 6) это защита устройства от проникновения внутрь. Пыль, пальцы, предметы и пр. Вторая (от 0 до защита от воды. То есть розетка с маркировкой IP68 защищена от всех воздействий, а IP00 — это фактически голый неизолированный контакт.
По типу

, розетки маркируются латинскими буквами. Внешний вид можно посмотреть на этом изображении —

В России применяются типы С, без заземления и F с заземлением

. Некоторые типы приборов снабжены вилкой другого типа и могут быть использованы в наших сетях при помощи адаптера

Обратим особое внимание на диаметр штекера в вилке. Советские вилки не пролезут в евророзетку, поскольку штыри на вилке толще

Как правило, маркировка диаметра уже давно не наносится на розетках, просто стоит помнить, что это 4 мм, а советский штекер имеет диаметр 4,8 мм

Как правило, маркировка диаметра уже давно не наносится на розетках, просто стоит помнить, что это 4 мм, а советский штекер имеет диаметр 4,8 мм.


Обозначение постоянного и переменного тока.

Про группу AC/DC многие слышали, и это как раз то самое — постоянный переменный ток. Красивое название. Обозначение постоянного тока встречает реже и стоит понимать, что означают символы:


(—) или DC

(Direct Current в переводе постоянный ток). Это значит, что не стоит пытаться включить в такую розетку обычный прибор, требующий переменного тока. На схемах обозначаю стрелкой направления и символами «+» и «-», как полярность. Простейший пример — обычная батарейка.


Переменный ток

будет обозначен таким образом: (~) или AC (Alternating Current, то есть переменный ток). Если обдумать, то обозначение постоянного и переменного тока в названии содержат важную информацию — ток постоянного направления, и ток, направление которого изменяется. Это хорошо иллюстрирует эта картинка.

Кроме этой информации на розетке можно обнаружить маркировку в герцах — допустимая частота тока. Это как раз значение, которое говорит сколько раз в секунду «направление» тока меняется. Стандарт это 50 Гц.

А теперь мы подошли к самой важной характеристике, о чем поговорим отдельно, поскольку это более важный вопрос, чем какой ток в розетке постоянный или переменный

Как узнать где у конденсатора полярность

У большинства элементов принята боле-менее однообразная система маркировки полярности. Обозначение полярности конденсатора имеет несколько типов, которые нетрудно запомнить:

  • Внешний вид (форма корпуса, длина и толщина ножек);
  • Маркировка (нанесение соответствующих символов у выводов или на корпусе);
  • Обозначения на электронных схемах.

По внешнему виду

Как определить полярность конденсатора по внешнему виду? Наиболее просто это сделать для приборов с цилиндрическим корпусом, у которых выводы расположены на противоположных торцах (аксиальный тип корпуса). Даже если маркировка полностью стерта, то тот вывод, который присоединен напрямую к металлическому корпусу, имеет знак «минус».

Вывод, установленный на корпусе через изолятор (в данном месте обычно имеется утолщение или изменение формы корпуса) соответствует положительной полярности, то есть «плюс».


Аксиальная форма корпуса

Новые, не спаянные типы алюминиевых конструкций с ножками, расположенными в непосредственной близости друг к другу (радиальный корпус), имеют более длинный положительный вывод.

Иногда в старой аппаратуре можно встретить электролитические конденсаторы с одним выводом, которые крепятся к корпусу конструкции при помощи гайки. Здесь гайка – «минус», вывод «плюс».

Вам это будет интересно Перевод ватт в киловатты


Гаечное крепление

Еще реже попадаются элементы также с гаечным креплением, но с двумя выводами. Принцип маркировки во многом схож с предыдущим случаем, но здесь мы имеем дело со сдвоенным конденсатором, у которого общий «минус» находится на корпусе, а «плюс» расположен на выводах (каждый вывод соответствует отдельной емкости).

По маркировке

Производители также наносят маркировку на корпусе элементов. Здесь может быть несколько вариантов:

  • Знак «минус» на боковой поверхности цилиндра со стороны отрицательного вывода;
  • Знак «плюс» непосредственно у положительной ножки элемента;
  • Широкая темная полоса на торце напротив отрицательного вывода (обычно у твердотельных электролитических конденсаторов.

Обратите внимание! Для SMD компонентов обозначение обратное – широкая светлая или темная полоса возле положительной площадки. Маркировка твердотельных и SMD компонентов


Маркировка твердотельных и SMD компонентов

По схеме

На электрических схемах конденсаторы обозначаются в виде двух параллельных линий, которые символизируют обкладки. Возле положительного вывода ставят символ «+», или этот вывод обозначают более толстой линией, либо в виде узкого прямоугольника.

Некоторые производители электроники рисуют на схемах отрицательный вывод в виде отрезка дуги.


Обозначение на принципиальных схемах

Не печатных платах электролитический конденсатор имеет такие обозначения полярности:

  • Как на электрических принципиальных схемах;
  • В виде круга, у которого закрашен узкий сегмент в месте пайки отрицательного вывода.

Сварочный выпрямитель

Использование постоянного напряжения дает более качественный шов. Она позволяет кроме обычных видов обработки выполнять аргонно-дуговую сварку и другие виды работ.

Информация! Такие устройства кроме однофазных изготавливают трехфазные. Это увеличивает мощность с распределением нагрузки на три фазы и обеспечивает более “гладкое” выходное напряжение, без пульсаций.

Сварочные выпрямители различают по типу установленных выпрямительных блоков:

  • С двумя диодами. Вместо одной вторичной обмотки мотаются две и диоды подключаются по схеме с общей средней точкой.
  • С обычным диодным мостом. В однофазных аппаратах устанавливается обычный мост, из четырех диодов, в трехфазных – мост Ларионова, из шести.
  • Транзисторные. Редко встречаются из-за слишком мощных выходных транзисторов.
  • Тиристорные. Разновидность диодных аппаратов, но вместо диодов устанавливаются тиристоры и система управления. Регулировка осуществляется за счет изменения угла открытия тиристора и действующего значения напряжения.
  • Инверторные. Современные электронные аппараты индивидуального использования. Ток регулируется ручками управления или кнопками, расположенными на передней панели.

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).


Для измерения постоянного тока переключатель мультиметра нужно перевести в соответствующее положение

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Что такое dc ток

Специфическое название создано из английского словосочетания «Direct Current» (dc – аббревиатура). Это обозначение в буквальном переводе подтверждает главную особенность такого тока – постоянное направление.

Для практического применения подходит постоянное питание либо синусоидальный сигнал. В этих ситуациях несложно стабилизировать параметры источника и рассчитать корректно электрическую схему, силовой агрегат или другое подключаемое оборудование. Периодически повторяющиеся помехи (пульсации) устраняют фильтрацией. Гораздо сложнее обеспечить длительный рабочий процесс, когда ток и напряжение изменяются произвольным образом.

Определение постоянного тока

Созданием разницы потенциалов на концах металлического проводника обеспечивают перемещение свободных электронов. Аналогичные процессы с иными носителями зарядов (ионами, дырками) происходят в газах, электролитах и полупроводниках. Необходимая для процесса энергия вырабатывается химическим способом в аккумуляторах и гальванических элементах. Ее создают преобразованием механической силы в электромагнитное поле с применением генератора. Вне зависимости от природы источника, ток в цепи будет стабильным, если поддерживать определенное dc напряжение.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше. Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника. Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью

Основные характеристики тока

Принято обозначать рассматриваемый параметр через силу. Однако следует понимать, что в действительности речь идет об интенсивности перемещения заряженных частиц в определенном проводящем материале. Величина тока выражается в амперах. Для расчетов применяют формулы, которые могут означать взаимные связи основных электрических параметров и сопротивления цепи.

Оборудование, выдающее переменный электрический ток

Все оборудование, предназначенное для сварки переменным током, можно разделить на следующие категории:

  1. Оборудование, которое предназначено для полуавтоматической сварки. Данный процесс осуществляется с помощью особой электродной проволоки, в средах защитного (MAG) и инертного (MIG) газов.
  2. Оборудование, предназначенное для осуществления РДС электрическим переменным током. Осуществляется с помощью особых штучных электродов, с особым покрытием.
  3. Оборудование, с помощью которого можно осуществлять ручную аргоновую сварку. Данный метод осуществляется с помощью неплавящихся электродов, изготовленных из вольфрама.


Схема устройства сварочного аппарата.

Кроме того, необходимо добавить, что эти аппараты имеют свои собственные аббревиатуры и позволяют выполнять сварку постоянным или же переменным током. Дуговая сварка штучными электродами обозначается как ММА, а аргоновая сварка неплавящимися электродами – TIG.

Кроме того, методы сварки подразделяются на следующие виды:

  • MMA-AC/MMA-DC (РДС штучными электродами);
  • TIG -AC /TIG-DC (неплавящимися электродами).

Рассмотрим основные плюсы и минусы, которые присущи TIG. Вне зависимости от типа подачи тока, данный вид сварки имеет следующие преимущества:

  • высочайшее качество сварного шва;
  • возможность «варить» металлические объекты, обладающие большой площадью сечения;
  • отсутствие брызг.

Вполне естественно то, что там, где есть преимущества, есть и недостатки. А недостатки вышеназванного метода следующие:

  1. Сварщику нужно иметь высокую квалификацию, а также обладать особым профессионализмом.
  2. Постоянно надо с собой таскать баллон с газом.
  3. Очень низкая скорость выполнения сварочных работ.

Теперь следует сказать пару слов о методе MMA. Его преимуществами является:

  • более экономичное использование;
  • отсутствие необходимости в наличии баллона с газом.

Ну, а недостатками метода можно считать:

  • очень низкую производительность работы;
  • необходимость снимать шлак с готового изделия.

Принцип работы тиристора

Детали регулятора подключены как параллельно, так и встречно друг другу. Они постепенно открываются импульсами тока, которые образуются транзисторами vt2 и vt1. При запуске прибора оба тиристора закрыты, С1 и С2 это конденсаторы, они будут заряжаться через резистор r7. В тот момент, как напряжение какого-либо из конденсаторов достигнет напряжения лавинной пробивки транзистора, тот открывается, и через него и идёт ток разряда, совместного с ним конденсатора. После открытия транзистора открывается соответствующий ему тиристор, он подключит нагрузку в сеть. Затем начинается противоположный по признакам полупериод переменного напряжения, что предполагает закрытие тиристора, затем следует новый цикл подзарядки конденсатора, уже в противоположной полярности. Далее открывается следующий транзистор, но снова подключит нагрузку в сеть.

С помощью чего измеряют полярность у конденсатора

Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

  • Переключатель прибора ставят в положение измерения сопротивления.
  • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
  • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
  • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

Вам это будет интересно Как выбрать цветовую температуру

Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка меняющегося тока. Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом подключении приборов потребления к электрощитам и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. Выполняется подача в отдельный дом и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Параметры тока

Амперметр

Очень важной количественной характеристикой тока является сила тока

(величина тока ), или простоток , — скалярная физическая величина, равная величине заряда, который проходит через поперечное сечение проводника за единицу времени.

Но термин «сила тока» не следует воспринимать, как проявление силы

в буквальном смысле. В проводниках нет силы. Там есть только движение электрических зарядов.

Если за время t

через проводник сечениемS протекаетQ зарядов, то величина тока выражается формулой

I= Q/t Единица измерения величины тока в системе СИ — ампер (А). Ток в проводнике равен 1 амперу, если за 1 секунду через проводник протекает заряд величиной в 1 кулон. Измеряют силу тока прибором, который называется амперметром. Он включается последовательно в электрическую цепь.

Для постоянного тока в единицу времени через любое поперечное сечение протекает одинаковое количество электрических зарядов.

Величина, равная отношению силы тока I

к площади поперечного сечения проводникаS , называетсяплотностью тока . В системе СИ плотность тока измеряется в А/м2. Конечно, практически невозможно найти проводник с диаметром сечения, равным квадратному метру. По этой причине силу тока принято измерять в А/мм2.

j= I/S Любой проводник противодействует протеканию по нему электрических зарядов

Поэтому величина тока в проводнике зависит от другой важной величины, называемой сопротивлением. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока

Она обозначается буквойR и определяется по формуле:

. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока. Она обозначается буквойR и определяется по формуле:

R=UI ,

где U

– напряжение, или разность электрических потенциалов, на концах проводника;

I

– сила тока, протекающего между концами проводника.

В систем СИ единицей измерения сопротивления является ом

Разные материалы по-разному сопротивляются движению тока. Поэтому сопротивление проводника зависит от вещества, из которого он сделан, его длины и сечения.

R = ρ ˑ l /S

где ρ

– удельное электрическое сопротивление проводника, его способность препятствовать прохождению электрического тока;

l – длина проводника;

S

— площадь поперечного сечения проводника.

Каждый источник постоянного электрического тока создаёт стороннее электрическое поле

, совершающее работу по разделению положительно и отрицательно заряженных частиц и перемещению их в электрической цепи. Эту работу производят любые силы не электрического происхождения, которые действуют внутри источника. Они называютсясторонними силами . Возникают эти силы по разным причинам. Например, в гальваническом элементе они появляются в результате химических реакций, а в генераторах постоянного тока – при движении проводника в магнитном поле.

Величина, численно равная работе, которую выполняют сторонние силы, перенося единицу положительного заряда по всей замкнутой цепи, называется электродвижущей силой

(ЭДС).

где Е

– ЭДС;А – работа, совершаемая источником по переносу заряда величинойQ .

Единицей измерения ЭДС в системе СИ является вольт

(v,V ). ЭДС источника тока равна 1 вольту, если при перемещении заряда, равного 1 кулону, совершается работа в 1 джоуль.

Перенося электрический заряд, источник тока совершает работу А0 по внутреннему участку (внутри себя самого) и работу А1 по внешнему участку электрической цепи. Поэтому полная работа А = А0 + А1

. Разделив обе части уравнения наQ, получим Величина AQ

называетсяпадением напряжения на внутреннем участке цепи (U ), аA1Qпадением напряжения на внешнем участке цепи (U1 ).

A=U+U1 , аU1= А –U. Величина, равная произведению тока на напряжение, называется мощностью

. Единица измерения мощности –ватт .

P=IU=I2R=U2R Если в электрической цепи есть источник ЭДС, то P=Iˑε , гдеε – ЭДС.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: