Метод эквивалентных преобразований электрических цепей примеры

Напряжение цепи переменного тока | Электрикам

Переменное напряжение — это напряжение, которое изменяется с течением времени. Далее будем рассматривать только гармоническое переменное напряжение (изменяется по синусоиде).

u = Umsin(2πt + Ψ ) = Umsin(ωt + Ψ )

Где u = u(t) — мгновенное значение переменного напряжения .

Um —максимальное значение напряжения (амплитудное значение) .

f — частота  равная числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

ω — угловая частота (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

U — Действующее значение напряжения :

Рассмотрим параметры напряжения в бытовой электросети.

Все мы знаем, что у нас дома в розетке поступает переменный ток, с напряжением 220 вольт и частотой 50 герц (в идеальных условиях) на самом деле допускается не большая погрешность как в меньшую, так и в большую сторону так, что не удивляйтесь если ваш вольтметр покажет не 220, а например 210 или даже 230 В.).

Большинство приборов измеряет не амплитудное, а действующее значение переменного напряжения, тока, мощности так, что если мы говорим что у нас напряжение сети 220, 380 В и т. д. то имеется виду именно действующие значения.

  • Действующее значение напряжения U = 220 В.
  • Амплитудное значение напряжения цепи переменного тока Um = U*√2 = 220 *√2 = 311 В.
  • Угловая частота ω = 2πf = 3,14*2*50 = 314 рад/с.
  • Начальная фаза Ψ = 0 град.
  • Мгновенное значение u  = 311sin(314t) В.

Практическое применение

Чаще всего на практике расчёт общего сопротивления цепи выполняют для того, чтобы узнать потребляемую мощность той или иной схемы. При этом, зная общее сопротивление, можно найти и такие важные параметры цепи, как ток и напряжение. Поэтому и рисуют эквивалентную схему электрической цепи. Простые цепи состоят только из последовательных или параллельных участков, но чаще встречаются комбинированные соединения. Перед тем как приступить к расчёту эквивалентного сопротивления, вся электрическая цепь разделяется на простые контуры. Как только импеданс каждого такого контура будет подсчитан, схема перерисовывается, но вместо контуров рисуется уже резистор. Затем всё повторяется, и это происходит до тех пор, пока не останется один элемент.

Простое соединение

Пусть будет дана схема, состоящая из трёх резисторов, включённых последовательно. При этом сопротивление R1и R2 одинаковое и равно 57 Ом, а сопротивление R3 составляет один килоОм. Для расчёта общего сопротивления цепи сначала понадобится привести значение R3 согласно Международной системе единиц. R3 = 1 кОм = 1000 Ом.

Так как соединение последовательное, используется формула: Ro = R1+R2+R3. Подставив известные значения, рассчитывается эквивалентное значение: Ro = 57+57+1000 = 1114 Ом.

Если же те же самые резисторы будут расположены параллельно друг другу, то для расчёта общего сопротивления уже используется другое выражение:

1/Ro = 1/R1 + 1/R2 +1/R3.

Ro = R1*R2*R3 / (R1*R2+R2*R3+R1*R3).

Подставив исходные данные в эту формулу, получим:

Ro = 57*57*1000/ (57*57 +57*1000+ 57*1000) = 3249000/117249 = 27,7 Ом.

Комбинированный контур

Необходимо вычислить мощность и эквивалентное сопротивление смешанной цепи, состоящей из четырёх резисторов. Резистор R1 =R2 =5 Ом, R3= 10 Ом, R4 =3 Ом. На схему подаётся питание пять вольт. Первоначально понадобится упростить схему. Сопротивления R3 и R4 включены относительно друг друга параллельно. Поэтому находится их объединённое сопротивление:

Rp = (R3*R4)/(R3+R4).

Rp = (10*3)/ (10+3) = 2,3 Ом.

Теперь схему можно перерисовать в виде трёх последовательно включённых резисторов и найти общее сопротивление путём сложения их величин:

Ro = R1+R2+Rp = 5+5+2,3 = 12,3 Ом.

Зная эквивалентное сопротивление, используя закон Ома, несложно вычислить силу тока в цепи и мощность эквивалентного резистора:

I = U/R = 5/2,3 = 2,2 A.

P = I*U = 2,2*5= 11 Вт.

Таким образом, путём постепенного упрощения схемы можно свести цепь из последовательно и параллельно соединённых резисторов к одному элементу. А затем рассчитать его сопротивление и требуемую мощность.

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом

или греческой буквой омегаΩ ). В формулах и расчетах сопротивление обозначается буквойR . Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

Что такое электрический ток?

Сейчас мы не представляем себе ни нормального дня без электричества, этот вид энергии так хорошо прижился у нас в быту, что мы попросту ничего без него не сможем сделать.

Только представьте на минуту этот ужас без электричества, когда весь наш мир поглотит кромешная темнота… Невозможно будет без электричества приготовить пищу, не смогут работать телевизор и интернет.

Зайдите к себе на кухню и посчитайте количество электрических приборов, наверняка насчитаете, как минимум, десять штук. А если вернуться в прошлое, когда электрическая энергия не была так распространена? Мы ведь как-то обходились без неё.

Вы спросите, почему электричество, почему этот вид энергии, ведь есть много альтернативных источников энергии? Например, для работы электротехники можно использовать тепловую энергию, механическую, энергию солнца, приливов и так далее.

Но почему именно этот вид энергии? Да потому, что ее использование экономически выгодно и эффективно, ее легко получить и передать и что немаловажно — преобразовать в другие нужные нам виды энергии. Еще немаловажным плюсом всех электрических машин является компактность

Если сравнить двигатель внутреннего сгорания и простой электродвигатель одинаковой мощности, то второй как минимум в два раза будит меньше. Не говоря уже о стоимости обслуживания, потерях и количества энергии затраченного на выполнение одинаковой работы.

Каким бывает ток?

Ну, мы думаем, хватит распевать все преимущества электрической энергии, настало время поговорить о ней самой, что же она из себя представляет, и с чем ее едят.

Во-первых, хотим уяснить, что все представление об электрической энергии делится на два вида: постоянный ток и переменный. У нас в быту в основном применяется переменный ток, и только в некоторых случаях – постоянный.

Например, для зарядки мобильных телефонов, да и компьютеры тоже работают на постоянном токе, батарейки и различного типа аккумуляторы тоже являются источниками постоянного тока.

Этим двум видам энергии есть научные определения.

Переменный ток

Начнем с переменного тока. Переменным электрическим током называется направленное упорядоченное движение электрически заряженных частиц, которое изменяется по величине и направлению в течении времени.
Существуют несколько электрических величин характеризующих электрическую энергию.
Все наверное знают такой термин как напряжение.

Обозначается оно буквой U латинского алфавита и измеряется в вольтах (В). Вторая величина, называемая силой тока, обозначается буквой I и измеряется в амперах (А). Именно ток потребляется из сети, когда мы что-то подключаем к ней. Также существует такое понятие, как частота.

Замеры различных физических величин можно произвести при помощи электроизмерительных приборов

Постоянный ток

А вот постоянным током называют упорядоченное направленное движение электрически заряженных частиц, но, в отличие от переменного тока, не изменяющееся с течением времени. Этот род тока также характеризуется напряжением и силой тока.

Но эти два рода тока в одних и тех же условиях ведут себя по разному, но есть закон, которому подчиняются и переменный и постоянный токи. Это всем давно известный закон Ома. Он заключается в том, что сила тока, протекающая в цепи прямо пропорциональна напряжению этой цепи и обратно пропорциональна сопротивлению этой цепи I=U/R.

Появляется новая характеристика — сопротивление R, измеряется в омах (ОМ), оно указывают на сопротивление, которое оказывает цепь, то есть проводник протеканию по нему тока. Первые упоминания об электричестве указываются в физике.

Самыми надежными марками считаются отечественные

Общее описание силы тока

Сила тока является объемом электрических зарядов, проходящих сквозь поперечные профили проводников в интервале времени, равному одной секунде. Как уже было выше сказано, что за единиц силы тока принимают Ампер, которая и принадлежит к Международной СИ, используемой во всех странах мира.

Один ампер равен силе изменения потока электричества при прохождении по параллельным, парным линейным проводникам бесконечной длины, имеют ничтожно малую площадь кругового сечения. Эти материалы находятся в вакууме друг от друга на расстоянии одного метра. Он вызывает силу взаимного влияние равную 2*10-7. Единица исчисления силы тока Ампер соответствует одному кулону, пройденному за одну секунду через поперечный профиль материала проводника.

В математическом исчислении характеристика выглядит как 1 А = 1 кулон/1 секунда. Величина показателя относительно большая, поэтому для бытовых электроприборов и микросхем применяют дополнительные единицы: 1 мА и 1 мкА, которые равны одной тысячной и одной миллионной части ампера.

Если известна величина электрозаряда, прошедшего сквозь проводник с нужным сечением за требуемый промежуток времени, то параметр можно выразить следующей формулой: l=q/t.

В замкнутой сети без ответвлений за одну секунду времени проходит одинаковое количество электронов в любом участке проводника. Поскольку заряды не могут накапливаться исключительно в одном участке электрической цепи, то его интенсивность не зависит от толщины и сечения кабеля.

Для более сложных цепей с ответвлениями такое утверждение также остается истинным. Но такое определение действует только для отдельных участков схемы, которые следует рассматривать как элементарная сеть.

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
  2. Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
  3. Формула: I=frac
  4. U — напряжение (в системе СИ измеряется — Вольт)

Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

Формула: U=IR

  • R— электрическое сопротивление (в системе СИ измеряется — Ом).
  • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
  • Формула R=frac

Определение единицы сопротивления — Ом

1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер).

Закон Ома для полной цепи

Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

Формула I=frac

varepsilon — ЭДС источника напряжения, В;
I — сила тока в цепи, А;
R — сопротивление всех внешних элементов цепи, Ом;
r — внутреннее сопротивление источника напряжения, Ом.

Как запомнить формулы закона Ома

Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

  • U — электрическое напряжение;
  • I — сила тока;
  • P — электрическая мощность;
  • R — электрическое сопротивление

Смотри также:

Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

Мощность цепи с катушкой индуктивности

Мощность, как известно из программы средней школы, это произведение тока и напряжения, которые являются величинами переменными. Значит, переменной величиной в цепи с активным сопротивлением и индуктивностью будет и мощность.

Ее значение в определенный момент можно вычислить, перемножив значения тока и напряжения в этот же момент. Проделав эти действия для каждого временного момента, получаем графики: а – для содержащей индуктивность цепи, б – активное:

Пунктирной кривой p показана мощность цепи переменного тока, которая состоит из индуктивности. Для ее построения справедливо алгебраическое умножение: умножение двух величин с одинаковым знаком (два минуса или два плюса) в результате дают величину положительную, а при умножении их с разными знаками – отрицательную.

Для цепи, которая помимо индуктивности содержит резистор, график мощности выглядит так:

Линия мощности при этом расположена оси времени. Означает это, что генератор с цепью не обмениваются энергией, поэтому отдаваемая в цепь генератором мощность, цепью потребляется полностью.

Элементы цепи

При сравнении внешних характеристик источника ЭДС рис. Мощность трёхфазной цепи 3.

Классический метод расчёта переходных процессов 5. В зависимости от электропроводности все вещества подразделяют на: 1.

Последовательное соединение в цепи Большое количество электрических цепей состоят из нескольких приемников тока.

Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. На схеме этот элемент выглядит следующим образом. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Метод узловых потенциалов

Идеальному источнику тока приписывают внутреннее сопротивление, стремящееся к бесконечно большому значению, и неизменный ток Iк не зависящий от напряжения на его зажимах, равный току коротного замыкания, вследствие чего неограниченное увеличение присоединенной к источнику нагрузки сопровождается теоретически неограниченным возрастанием напряжения и мощности. Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока.

Различают два рода тока: 1. Ветвь электрической цепи схемы — участок цепи с одним и тем же током. Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис. Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2 , между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2. Данное устройство работы системы применяется к любому электрическому бытовому прибору.

По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. При сравнении внешних характеристик источника ЭДС рис. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Классический метод расчёта переходных процессов 5. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Это уравнение является линейным. В состав цепи входят: 1.
Законы Кирхгофа — Теория и задача

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Электрические цепи и их разновидности

Электрическая цепь представляет собой комплекс устройств и отдельных объектов, которые связываются заданным способом. Они обеспечивают путь для прохождения электротока. Для характеристики отношения заряда, протекающего в рамках каждого отдельного проводника за некоторое время, к продолжительности этого времени используется определенная физическая величина. И это сила тока в электрической цепи.

В состав такой цепи включены источник энергии, энергопотребители, т.е. нагрузка и провода. Они делятся на две разновидности:

  • Неразветвленные – ток, движущийся от генератора к энергопотребителю, не меняется по своему значению. Например, это освещение, включающее в свой состав только одну лампочку.
  • Разветвленные – цепи, имеющие некоторые ответвления. Ток, двигаясь от источника, разделяется и идет на нагрузку по нескольким ветвям. При этом его значение меняется.

Примером может служить освещение, включающее многорожковую люстру.

Ветвь являет собой один или несколько компонентов, соединенных последовательно. Движение тока идет от узла с высоким напряжением к узлу с минимальным его значением. При этом входящий ток на узле совпадает с выходящим.

Цепи могут быть нелинейными и линейными. Если в первых существует один и более элементов, где есть зависимость значений от тока и напряжения, то у вторых характеристики элементов не имеют такой зависимости. Кроме того, в цепях, характеризующихся постоянным током, его направление не меняется, а при условии переменного тока происходит его изменение с учетом параметра времени .

4.2 Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11и I22- контурные токи.

Рис. 4.2

Токи в сопротивлениях R1и R2равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11и I22, так как эти токи направлены в ветви с R3встречно.

Порядок расчета

Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

(4.4)

(4.5)

Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы

,.

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

где R12- общее сопротивление между первым и вторым контурами; R21- общее сопротивление между вторым и первым контурами. E11= E1и E22= E2- контурные ЭДС. В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

,.

Собственные сопротивления всегда имеют знак «плюс». Общее сопротивление имеет знак «минус», если в данном сопротивлении контурные токи направлены встречно друг другу, и знак «плюс», если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11и I22, затем от контурных токов переходим к токам в ветвях. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви. В схеме нарис. 4.2

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам. Контурные токи желательно направлять одинаково (по часовой стрелке или против). Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

4.3. Метод узловых потенциалов

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла.

Рис. 4.3

Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов.

Примем для схемы ᵠ4 = 0.

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

В соответствии с законами Ома для активной и пассивной ветви

,

Где — проводимость первой ветви.

,

Где — проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

(4.7)

где g11= g1+ g2- собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. g12= g2- общая проводимость между узлами 1 и 2. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

— сумма токов источников, находящихся в ветвях, сходящихся в узле 1. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком «плюс», если от узла — со знаком «минус». По аналогии запишем для узла 2:

(4.8)

для узла 3:

(4.9)

Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы φ 1,φ2,φ3, а затем по закону Ома для активной или пассивной ветви найдем токи. Если число узлов схемы — n, количество уравнений по методу узловых потенциалов — (n — 1).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: