Характеристики диода шоттки 1n5819

Общая информация

Свое название эти детали получили в честь немецкого ученого В. Шоттки, за которым числится заслуга определения свойств барьерной области в месте соприкосновения полупроводящего элемента с металлом. В роли первого в диодных изделиях часто выступает арсенид галлия. Иногда применяется и кремниевый полупроводник. Металлические детали могут быть платиновыми или серебряными, реже встречаются варианты из золота.


Вариант для поверхностного монтажа

По своим параметрам данные изделия во многом отличаются от диодов из кремния, использующих p—n переход:

  1. Они обладают небольшим значением емкости перехода. Это дает возможность работы в условиях высоких частот, позволяет применять эти компоненты для создания цифровых схем.
  2. Когда изделие Шоттки подключается прямо, напряжение снижается на величину, в 2-3 раза меньшую, чем при включении стандартного изделия, предназначенного для выпрямления. Из-за этого феномена они более продуктивны в ситуации прохождения прямого тока, так как меньшее значение падения предполагает, что потери тепла, рассеиваемого в окружающую среду, будут значительно ниже. Но, если показатель обратного напряжения существенно растет, обгоняя значение в сотню вольт, величина падения также растет и становится несильно отличимой от ситуации использования традиционного диода. Данный эффект обусловливает границы оптимального напряжения эксплуатации данного типа диодных элементов: их лучше выбирать тогда, когда напряжение исчисляется десятками вольт.
  3. Также эти диоды отличаются быстротой восстановления, поэтому их можно использовать в конфигурациях, выпрямляющих напряжение до 100 килогерц и выше. Благодаря отсутствию диффузного процесса сторонних носителей электрического заряда, данные диодные компоненты отличаются повышенным быстродействием.

Важно! В ситуации, когда средний ток равен одной единице измерения (1 А), а обратный параметр напряженности не превышает 40 В, часто устанавливают модель in5819. Она выпускается в двух исполнениях

SMD-вариант для поверхностной установки имеет пластмассовый корпус и снабжается маркировкой SS14. Цилиндрический вариант с длинными «усиками»-выводами, предназначенными для продевания в подготовленные отверстия на плате, также имеет корпус из пластика.


Традиционное исполнение данного диода

Маркировка диода in4007

Начнем с расшифровки для деталей в корпусе DO-41. Варианты нанесенных на него обозначений приводятся на рисунке.


Значимые элементы маркировки

Расшифровка:

  1. Наименование модели серии 1N4001-4007.
  2. Графический или буквенный или буквенно-цифровой код производителя радиодетали.
  3. Дата производства в формате месяц/год (приводится последние две цифры).

Поскольку SMD корпус имеет небольшой размер, то если нанести на него полное наименование модели, распознать надпись невооруженным глазом будет затруднительно. Поэтому название кодируется в соответствии с таблицей.

Таблица маркировки для smd-диодов серии 1N400x.

М1 М2 М3 М4 М5 М6 М7
1N4001 !N4002 1N4003 1N4004 1N4005 1N4006 1N4007

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Определение типа элемента

Хорошо если размер корпуса позволяет нанести на нем хоть сколько-нибудь понятную маркировку. Но чаще всего диоды настолько малы, что их трудно маркировать даже цветом. В этом случае отличить диод от стабилитрона, например, не представляется возможным, ведь они как близнецы-братья.

В подобных ситуациях поможет лишь принципиальная схема аппарата, из которого извлечен элемент. В соответствии с ней можно определить тип компонента и его марку. Если же отсутствует эта информация, можно попробовать поискать принципиальную схему ремонтируемого аппарата в интернете или сделать фотоснимок элемента и также обратиться в Сеть и провести поиск по изображению.

Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики

В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.

Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.

Металл и полупроводник: особенности контакта.

В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.

Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:

  1. пониженное падение напряжения при прямом смещении;
  2. незначительная собственная ёмкость;
  3. малый обратный ток;
  4. низкое допустимое обратное напряжение.

При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом.

Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов. Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.

Низковольтные диоды.

Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.

В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.

Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.

Основные параметры.

  1. Максимальное постоянное обратное напряжение;
  2. Максимальное импульсное обратное напряжение;
  3. Максимальный (средний) прямой ток;
  4. Максимальный импульсный прямой ток;
  5. Постоянное прямое напряжение на диоде при заданном прямом токе через него;
  6. Обратный ток диода при предельном обратном напряжении;
  7. Максимальная рабочая частота диода;
  8. Время обратного восстановления;
  9. Общая емкость диода.

Производство диодов Шоттки.

В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.

Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.

Характеристика и аналоги диода с барьером Шоттки 1n-5819

Диоды Шоттки – отдельный тип полупроводниковых приборов, в которых не используется p – n переход, элементом с односторонней проводимостью в них является зона контакта металла с полупроводником. Они часто называются диодом с барьером Шоттки, по имени германского исследователя Вальтера Шоттки, определившего свойства потенциального барьера в контактном слое металл – полупроводник, в том числе его выпрямительные свойства. Полупроводник в таких структурах – кремний или арсенид галлия, наиболее часто применяемые металлы – золото, серебро, платина.

Корпус DO-41

Общая информация

Диоды, использующие барьер Шоттки, широко распространены и обладают рядом свойств, отличных от кремниевых приборов с p – n переходом:

  • При прямом включении диода Шоттки падение напряжения на нём в 2-3 раза ниже, чем у обычных выпрямительных. При значительном увеличении обратного напряжения (более 100 вольт) этот параметр увеличивается и приближается к значениям для стандартного диода, что определяет основной диапазон напряжений при использовании – десятки вольт;
  • Малая ёмкость перехода, позволяющая работать на высоких частотах в цифровых схемах;
  • Способность к быстрому восстановлению допускает применение в выпрямителях напряжения до 100 и более килогерц, например, в блоках питания компьютеров.

При необходимости использовать диод с барьером Шоттки на обратное напряжение не более 40 вольт и средний ток 1 ампер наибольшее распространение нашёл диод 1N5819.

Диоды выпускаются в пластмассовом корпусе JEDEC DO – 41 с аксиальными выводами для монтажа ТНТ – установки в отверстия печатной платы, параллельно или перпендикулярно поверхности. Рядом с отрицательным выводом (катод) наносится кольцевая полоска.

Также производится в корпусе SMA (DO – 214AC) для SMD-монтажа, маркируются как SS14. Катод указывается аналогично обозначению на ТНТ – на корпусе.

In5819 для поверхностного монтажа

Электрические параметры

Для любого исполнения корпуса 1N5819 характеристики полностью идентичны:

  • Пиковое и максимальное рабочее обратное напряжение – 40 В;
  • Переменное обратное напряжение – 28 В;
  • Выпрямленный ток (средний) – 1 А;
  • Общая ёмкость кристалла и корпуса – 110 пФ;
  • Рабочая температура – от -65 до +125 оС.

Важно обратить внимание на одинаковые величины обратных напряжений – пикового и рабочего. Такая особенность параметров свойственна практически всем диодам Шоттки – высокая чувствительность даже к небольшому превышению допустимого обратного напряжения

Особенности применения

Особенности технологии производства диодов с барьером Шоттки накладывают ограничение на их применение в схемах с возможным увеличением относительно указанного в описании обратного напряжения. В таких ситуациях прибор выходит из строя очень быстро. В выпрямителях импульсных блоков питания применяются совместно со снаббером цепочки из последовательно включённых резистора и конденсатора для подавления высокочастотных импульсов. In5819 часто применяется как шунтирующий выводы сток – исток MOSFET транзисторов небольшой мощности.

Необходимо обратить внимание на отвод тепла от корпуса. Несмотря на то, что рабочая температура диода 125 оС, чрезмерный нагрев может спровоцировать неконтролируемый рост обратного тока, с неминуемым пробоем перехода или его разрушением

Если обратное напряжение не более 30 вольт, можно использовать диод 1N5818, а до 20 вольт – 1N5817. Производители электронных компонентов выпускают множество ближайших и полных аналогов, как с обозначением типа 1N5819, так и другими: 11DQ03 – фирмы IOR, BYV10 – PHILIPS. Диод 1N5819 – прототип отечественного (белорусской компании «Интеграл») изделия КДШ2105В, это диод Шоттки с аналогичными параметрами, но в корпусе ТО – 92 (КТ – 26).

Недостатки

Simatic step 7 professional/ basic v15 для totally integrated automation portal

Основной недостаток диода 1N5822 – это низкое обратное напряжение, равное 40 вольтам. Данная проблема свойственна всем барьерам Шоттки и объясняется особенностью их строения. Обычный диод после пробоя повышенным обратным напряжением в ряде случаев способен вернуться к нормальной работе. С диодами Шоттки, такими как 1N5822, подобного чуда уже не произойдёт, и деталь полностью выйдет из строя. Такая характеристика по обратному вольтажу обрекает эти электронные компоненты на работу только в низковольтных цепях. Значит, существенно снижаются их универсальность и количество устройств, в которых их можно встретить.

Второй минус 1N5822 состоит в высоком обратном токе утечки. Речь идёт о таком подключении детали, при котором на катод приложен больший потенциал, чем на анод. В идеале p-n переход не должен проводить ток в таком направлении. На деле некоторая часть зарядов всё-таки протекает и в обратную сторону. Поэтому данный ток называется утечкой, т.е. чем-то нежелательным и неправильным.

Данная проблема свойственна опять же всем барьерам Шоттки, а не только 1N5822. Конкретно для этого диода ток утечки сильно зависит от температуры и может достигать 0,2 ампер. При этом проблема имеет лавинообразный характер, т.е., если через диод начинает протекать обратный ток, то он нагревается. Повышение температуры, в свою очередь, приводит к возрастанию утечки. Это ещё сильнее увеличивает нагрев. Так по замкнутому кругу, пока деталь окончательно ни перегреется, и ни произойдёт её тепловой пробой, имеющий необратимый характер. Поэтому, если 1N5822 будет использоваться в режимах, близких к перегрузке, следует позаботиться об отводе лишнего тепла.

1N5822 диод характеристики которого позволяют использовать его в выходных цепях современных блоков питания. Он с каждым днём становится всё более востребованным. Объясняется это способностью работать на больших для такого корпуса токах до 3 ампер и при достаточно высоких частотах.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Особенности применения

Рассматривая характеристики диода 1n5819, нужно уделить внимание его эксплуатационным особенностям и ограничениям, которые накладывает конструкция. Модель часто используют как шток для шунтирования выводов маломощных транзисторных устройств

В тех электросхемах, где существует риск повышения обратного показателя напряжения, по сравнению с отмеченным в техническом описании, ставить такие барьерные диоды не стоит. При установке в такую схему они вскоре становятся непригодными к дальнейшей эксплуатации. Варианты 1n5818 и 1n5817 еще более требовательны к обратному напряжению: первую модель допускается устанавливать только в условиях, когда параметр не превышает 30 вольт, а для второй он должен быть не выше 20 вольт.

Используются детали серии диодов 1n5817-1n5819 в следующих областях:

  • зарядных устройствах для аккумуляторных батареек;
  • импульсных блоках питания разных видов;
  • для приема альфа,- и бета-излучения;
  • для шунтирования транзисторных приборов;
  • в выпрямляющих устройствах высокой частоты;
  • в производстве солнечных батареек;
  • в распознавателях нейтронных лучей.

Важно! Хотя эти детали обладают значительным температурным диапазоном эксплуатации и могут выдерживать значения до 125 градусов Цельсия, при монтаже нужно позаботиться об отведении избыточной теплоты от пластикового корпуса элемента. Очень высокая температура способна вызвать бесконтрольное повышение обратного тока, что весьма опасно, так как влечет за собой распад перехода либо его пробивание

Полярность диодов 1N5817

Очень важными моментами для монтажа любых компонентов печатной платы являются правильное определение и соблюдение полярности. С обозреваемой моделью диода в этом плане все просто – сторону корпуса, где располагается вывод катода, снабжают полосой другого цвета (зачастую светлого), оборачивающейся вокруг корпуса. Анодный вывод никак специально не помечают. На остальной части корпуса наносят лаконичную маркировку тем же красящим составом, каким выполнена полоса.

Монтаж диода 1N5817 на плату

Монтаж компонентов диодной серии 1n5817-1n5819 реализуется посредством припаивания с использованием технологии ТНТ. В этом случае выводы устанавливаются в специально подготовленные на плате дырочки. Сам корпус может помещаться как параллельно поверхности, так и перпендикулярно. Что касается максимального значения температуры, оно не должно превышать +250 градусов Цельсия, время его воздействия допускается не больше, чем 10 секунд. Пониженная и повышенная средовые температуры тоже имеют ограничения: не меньше -65 и не больше +150 градусов, соответственно.

Закрытый диод Шоттки

Диодный элемент считается закрытым в ситуации блокировки им прохождения тока. В некоторых случаях такая установка диода практикуется целенаправленно. Достоверно оценить, насколько хорошо элемент проводит электроток, можно, воспользовавшись измерительным прибором (амперметром или мультиметром) и узнав величину проходящего тока.

Открытый и закрытый диоды

Открытый диод Шоттки

На схемах диодные элементы обозначаются как стрелки, демонстрирующие направление прохождения тока в ситуации открытости диода. В нормальных условиях эта ситуация создается подсоединением анода к положительному полюсу источника тока (или напряжения), а катода – к отрицательному. Помимо этого, обязательно, чтобы напряжение превышало порог, при котором элемент начинает открываться (около 0,5 В). Проверить прохождение можно, замерив ток измерительным прибором. Косвенным показателем может быть напряжение – результаты измерения должны превышать порог и отвечать прямому соединению.

Устройство диода Шоттки 1N5817

Используемые для производства диодов корпусы-цилиндрики принадлежат к типажу DO-41. Сделаны они из литой пластмассы, с боковых сторон (донец) цилиндра помещаются луженые стержневые выводные элементы, обладающие поляризацией. Делают эти стержни из проволоки. В отношении горючести диодные тела проходят по категории UL 94 со спецификацией V-0. Это обозначает, что завершение горения происходит по истечении 10 секунд.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:

Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (Uпор), которое для германиевых диодов равно 0,1 — 0,2 В, а у кремниевых диодов равно 0,5 — 0,6 В. В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (Uобр.) возникает обратный токобр). Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела. С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико. Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (Uпроб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера. Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Принцип действия

Принцип работы диода Шоттки почти не отличается от полупроводниковых диодов. Особенностью является наличие металла. В обычном полупроводнике используется 2 вещества, которые формируют внутри себя электроны с положительным и отрицательным зарядом. При прохождении электрического тока, часть заряда теряется на образование этих электронов.

В диоде Шоттки используется металл и полупроводник. В качестве металлического барьера при производстве используют золото, кремний, германий. Диод также состоит из анода и катода. При подаче напряжения на анод, металл создает магнитный барьер для прямого прохождения напряжения. На его поверхности создаются электроны с отрицательным зарядом. При образовании значительного магнитного поля элемент импульсно разряжается. Такой разряд способен повторятся бесконечное количество раз, при условии соблюдения рабочего напряжения и температуры.

Наиболее комфортным напряжением для этого типа диодов является параметр 40–60 вольт. Именно это напряжение позволяет осуществлять переход без потери доли напряжения и без увеличения температуры.

Температура также играет значительную роль для быстрого перехода зарядов. При малом напряжении на входе создается повышение температуры. За счет этого увеличивается количество заряженных электронов, которые быстрее преодолевают металлический барьер.

Диоды 1Т5817, 1N5818, 1N5819 диоды Шотке Однополупериодные выпрямители

Габариты, электрические параметры, характеристики, маркировка 1N5817      1N5818     1N5819…

Диоды 1N5818 1N5819, это выпрямители Шоттки, изделия оптимизированы для выпрямления очень низких напряжений, с умеренным током утечки. Типичные области применения, это импульсные источники питания, преобразователи, диоды, защита аккумуляторов.

Особенности ДИОДОВ    1N5817      1N5818     1N5819

Низкий профильВысокая чистота инкапсуляции, температурная стойкостьОчень низкое падение напряженияУстройство разработано для применения на промышленном уровне.Расширенная механическая прочность и влагостойкостьВысокая частота операцийСвинец (Pb) -свободная плакировкаПредохранительное кольцо для улучшения прочности и надежности

Общие сведения

1n5818 1n5819

Категория Дискретные, полупроводниковые продукты
Семейство Диоды, однополупериодные выпрямители
Прямое напряжение при токе 1A 600mВ
Обратное напряжение постоянного тока1n5818 30В
Обратное напряжение постоянного тока1n5819 40В
Выпрямляемый ток 1A
Обратный ток утечки 1n5818 1мА при 30В
Обратный ток утечки 1n5819 1мА при 40В
Тип диода Шоттки
Скорость Быстрое восстановление =< 500нс > 200мА
Тип монтажа Через отверстие
Корпус DO-204AL, DO-41, Axial
Другое название 1n5819 1N5819IR

Основные параметры, характеристики и габариты вы можете узнать скачав Datasheet

DATASHEET-1n5817-1n5818-1n5819-Fairchild-Semiconductor-Corporation

DATASHEET-1n5819-Vishay-Semiconductors

DATASHEET-1n5818-1n5819-IRF

DATASHEET-1n5817-IRF

DATASHEET-1n5817-1n5818-1n5819-Philips-Semiconductors

Типы диодов

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны коронного и тлеющего разряда), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Диоды
Полупроводниковые Не полупроводниковые
Газозаполненные Вакуумные

Ламповые диоды

Основная статья: Электровакуумный диод

Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается проходящим через него током из специальной цепи накала или отдельной нитью накала. Благодаря этому часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если электрическое поле направлено в противоположную сторону, поле препятствует движению электронов, и тока (практически) нет.

Полупроводниковые диоды


Полупроводниковый диод в стеклянном корпусе. На фотографии виден полупроводник с подходящими к нему контактами Основная статья: Полупроводниковый диод

Полупроводниковый диод состоит либо из полупроводников p-типа и n-типа (полупроводников с разным типом примесной проводимости), либо из полупроводника и металла (диод Шоттки). Контакт между полупроводниками называется p-n переходом и проводит ток в одном направлении (обладает односторонней проводимостью).

Специальные типы диодов


Цветные светодиоды Светодиод ультрафиолетового спектра излучения (увеличен)

  • Стабилитрон (диод Зенера) — диод, работающий в режиме (обратимого) пробоя p-n-перехода (см. обратную ветвь вольт-амперной характеристики). Используются для стабилизации напряжения.
  • Туннельный диод (диод Лео Эсаки) — диод, в котором используются квантовомеханические эффекты. На вольт-амперной характеристике имеет область так называемого «отрицательного сопротивления». Применяются как усилители, генераторы и пр.
  • Обращённый диод — диод, имеющий гораздо более низкое падение напряжения в открытом состоянии, чем обычный диод. Принцип работы такого диода основан на туннельном эффекте.
  • Точечный диод — диод, отличающийся низкой ёмкостью p-n-перехода и наличием на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением. Ранее использовались в СВЧ-технике (благодаря низкой ёмкости p-n-перехода) и применялись в генераторах и усилителях (благодаря наличию на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением).
  • Варикап (диоды Джона Джеумма) — диод, обладающий большой ёмкостью при запертом p-n-переходе, зависимой от приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости (управляемых напряжением).
  • Светодиод (диоды Генри Раунда) — диод, отличающийся от обычного диода тем, что излучает фотоны при рекомбинации электронов и дырок в p-n-переходе. Выпускаются светодиоды с излучением в инфракрасном, видимом, а с недавних пор — и в ультрафиолетовом диапазоне.
  • Полупроводниковый лазер — диод, близкий по устройству к светодиоду, но имеющий оптический резонатор. Излучает когерентный свет.
  • Фотодиод — диод, управляемый светом.
  • Солнечный элемент — диод, похожий на фотодиод, но работающий без смещения. Падающий на p-n-переход свет вызывает движение электронов и генерацию тока.
  • Диод Ганна — диод, используемый для генерации и преобразования частоты в СВЧ-диапазоне.
  • Диод Шоттки — диод с малым падением напряжения при прямом включении.
  • Лавинный диод — диод, принцип работы которого основан на лавинном пробое (см. обратный участок вольт-амперной характеристики). Применяется для защиты цепей от перенапряжений.
  • Лавинно-пролётный диод — диод, принцип работы которого основан на лавинном умножении носителей заряда. Применяется для генерации колебаний в СВЧ-технике.
  • Магнитодиод — диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
  • Стабистор — диод, при работе которых используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде.
  • Смесительный диод — диод, предназначенный для перемножения двух высокочастотных сигналов.
  • pin-диод — диод, обладающий меньшей ёмкостью за счёт наличия между сильнолегированными полупроводниками p- и n-типов материала, характеризующегося собственной проводимостью. Используется в СВЧ-технике, силовой электронике, как фотодетектор.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector