Теория и модель
Реальный трансформатор работает по принципу наведение ЭДС индукции входным переменным током. Линии магнитной индукции распространяются по ферромагнитными сердечниками и пронизывают витки вторичных обмоток. Магнитный поток порождает переменный электрический ток с такой же частотой, как на входе первичной катушки.
ЭДС индукции возникает на витках всех обмоток, а также в магнитопроводе. Вихревые токи в сердечнике создают дополнительное сопротивление. Часть мощностей переменных напряжений, поступающих в цепи первичных обмоток, расходуется на преодоление сопротивлений и выделяется в виде тепла. Поэтому КПД реального трансформатора хотя и довольно высокий, но никогда не достигает 100%.
Теоретически можно представить себе мнимый аппарат со 100-процентным КПД.
Для этого предположим, что:
- обе обмотки индуктивные;
- активное сопротивление обмоток равняется нулю;
- отсутствует гистерезис, вызванный перемагничиванием магнитопровода;
- отсутствуют токи Фуко в сердечнике;
- магнитные потоки не рассеиваются, а циркулируют по идеальному магнитопроводу.
У аппарата с такими свойствами вся энергия, поступающая на вход первичной обмотки, преобразуется в напряжение во вторичной обмотке без каких-либо потерь. То есть, мы получим идеальный трансформатор (рис. 1).
На рисунке показан двухобмоточный прибор.Но нам ничего не стоит идеализировать семейство силовых трансформаторов с несколькими обмотками. Модель идеального трансформатора мы можем применить для трехфазных трансформаторов (рис. 2),и для других типов устройств, например для тороидальных трансформаторов (рис. 3).
Теория трансформаторов
Подключаем трансформатор тока
Теоретические обоснования того, что делают трансформаторы, включают в себя несколько разделов:
- Уравнения линейного трансформатора;
- Т-образная схема замещения;
- Потери;
- Габаритная мощность;
- КПД.
Уравнения линейного трансформатора
Линейные уравнения отображают взаимосвязь между величинами характеристик трансформатора. К ним относятся:
- U1 = L1(di1/dt) +L1,2(di2/dt) + I1 R1;
- L2(dI2/dt) + L1.2 + I2R2 = — I2RH,
где:
- U1 – мгновенное напряжение в первичной катушке;
- I1 и I2 – сила тока в обмотках;
- RH – сопротивление в нагрузке;
- L1,2 – взаимная индуктивность обмоток;
- L1, R1, и L2, R2 – индуктивность и сопротивление обеих катушек.
Т-образная схема замещения
Для тестирования электрической цепи какого-либо устройства трансформатор замещают Т-образной схемой, состоящей из элементов, указанных на нижнем рисунке.
Т-образная схема замещения
Потери
Специалисты разделяют потери на траты в стали и меди. Потери в стали происходят в сердечнике, утрата части энергии в меди относится к медным виткам обмоток.
В стали
Утрата части энергии происходит по причине потерь в магнитопроводе и обмотках. Величина потерь в стали связана с конструкцией сердечника, качеством электротехнической стали. Траты энергии уходят на нагрев, гистерезис и образование вихревых токов.
Магнитопроводы, сделанные из трансформаторного железа с добавлением кремния, значительно уменьшают потери и повышают удельное сопротивление стали. Конструкцию сердечника улучшают промежуточным лакированием соприкасающихся поверхностей пластин.
В меди
Потери в обмотках вызваны ненулевым вектором активного сопротивления в катушках преобразователя напряжения. Потери в меди сопровождаются нагревом проводов в обмотках. Часто они вызваны несоответствием количества витков напряжению в обмотках.
Габаритная мощность
Габаритную мощность трансформатора рассчитывают следующей формулой:
Pgab = (P1 + P2)/2 = (U1I1 + U2I2)/2.
Этот параметр можно определить ориентировочно по сечению сердечника. Величина габаритной мощности зависит от ряда показателей, таких как качество и толщина листов магнитопровода, размер проёма, степень индукции, общее сечение проводов обмоток и качество диэлектрических слоёв между пластинами.
Дополнительная информация. Ещё один фактор влияет на габаритную мощность трансформатора – это его стоимость. Чем дешевле устройство, тем меньше этот показатель.
КПД трансформатора
Коэффициент полезного действия приборов можно рассчитать по нескольким формулам. Три из них представлены ниже:
Формула 1
Формула 2
Формула 3
Для чего нужна модель идеального прибора?
Идеальный трансформатор часто используется при расчетах реальных конструкций. Он применяется в качестве эквивалента реального устройства в схемах для расчетов и в задачах по построению электрических цепей. (Пример построения схемы см. на рис. 4)
На практике часто приходится делать расчеты однофазных трансформаторов, вычислять параметры тороидальных сердечников, чтобы обеспечить требую мощность тороидальных устройств. От величины однофазной нагрузки зависит то, какую электрическую изоляцию необходимо применить для силовых разделительных моделей.
От режима нагрузки зависит выбор типа охлаждения обмоток конструкций, чтобы обеспечить надежность трансформатора.
Дело в том, что сделать точный расчет реального устройства очень трудно, так как его параметры зависят от переменных магнитных составляющих, в том числе и тех, которые выходят за пределы сердечника. Вихревые токи Фуко создают дополнительные сопротивления нагрузки.
Очень сложно поддается расчету разделительный трансформатор, так как его обмотки налагаются друг на друга, создавая запутанные вихревые токи. Проследить за сдвигом фаз, происходящих в этих переменных токах, почти невозможно.
Задачу упрощает модель идеального прибора. Применяя уравнение для этого мнимого устройства легко вычислить все его параметры. Они не сильно отличаются от параметров соответствующего типа реального аппарата. Относительная погрешность не превышает нескольких процентов, поэтому ею можно пренебречь.
Производя расчеты в различных рабочих режимах реального аппарата, можно с высокой точностью определить величины номинальных нагрузок, пользуясь уравнением для мнимого трансформатора.
Источник
История
В первой половине XIX века английский физик Фарадей проводил многочисленные опыты с электричеством. В результате экспериментов им было открыто такое явление, как электромагнитная индукция. 29 августа 1831 года учёный в своём дневнике описал результат своих исследований в этом направлении.
На кольцо из железа ø 150 мм и толщиной 20 мм были намотаны 2 медных провода длиной 150 мм и 180 мм. При подключении гальванической батареи к одной обмотке на зажимах другого проводника гальванометр фиксировал статическое напряжение. Так появился первый трансформаторный прототип.
Французский механик Румкорф в 1848 году сделал первую индукционную катушку. Она давала представление о том, что это такое трансформатор. В 1872 году профессор московского университета Столетов разработал теорию петли гистерезиса, а также обосновал доменную структуру ферритового сердечника.
30 ноября 1876 г. считается датой изобретения трансформатора переменного тока. В этот день был выдан патент на это изобретение знаменитому российскому физику Павлу Николаевичу Яблочкову. Прибор состоял из разомкнутого сердечника с двумя обмотками.
Устройство, изобретённое венгерскими инженерами в 1885 г., уже представляло собой прибор с замкнутым магнитопроводом. С тех пор сердечники стали делать из отдельных стальных листов. Приборы стали помещать в сосуды, заполненные маслом. Далее последовали различные усовершенствования конструкции преобразования тока. К этому приложили руку инженеры Эдисона, великий Никола Тесла, российские, английские и немецкие учёные.
Современные трансформаторы – это устройства, предназначенные для доставки потребителю электроэнергии с заданными характеристиками.
Глушитель для оружия
Благодаря фильмам многие верят, что выстрел из пистолета с глушителем на самом деле не слышно. Но в реальности глушители не так хорошо работают, поскольку выстрел очень громкий. К тому же глушители лучше было бы назвать подавителями. Глушители фактически не заглушают звук выстрела, они просто подавляют его. Независимо от технологии подавления звука выстрела, его трудно полностью погасить, особенно в пистолете, когда в маленьком устройстве высвобождается колоссальное количество энергии.
По материалам Listverse
- Почему мы толстеем, если едим с друзьями, и другие неожиданные факты
- Акулы несут яйца
- 1 миллиард курильщиков проживает на Земле в наше время
- В красивом историческом городе на Сицилии продаются дома за 1 евро
- Неожиданные факты про живые бомбы и подводное заседание министров
Задачи на расчет трансформаторов
Специально для тех, кто не знает, как подступиться к задачам по физике, мы подготовили памятку и собрали вместе более 40 формул по разным темам.
Задача на трансформатор №1
Условие
Определите напряжение на концах первичной обмотки трансформатора,имеющей N1=2000 витков, если напряжение на концах вторичной обмотки, содержащей N2=5000 витков, равно 50 В. Активными сопротивлениями обмоток трансформатора можно пренебречь.
Решение
Применим форулу для коэффициента трансформации:
k=N1N2=U1U2
Из данной формулы следует, что:
U1=U2·N1N2
Подставим значения и вычислим:
U1=50·20005000=20 В
Ответ: 20 В.
Задача на трансформатор №2
Условие
Первичная обмотка трансформатора находится под напряжением 220 В, по ней проходит ток 0,5 А. На вторичной обмотке напряжение составляет 9,5 В, а сила тока равна 11 А. Определите коэффициент полезного действия трансформатора.
Решение
Формула для коэффициента полезного действия трансформатора:
η=P2P1·100%
Здесь P=UI – мощность тока в обмотке.
Возьмем данные из условия и применим указанную формулу:
η=U2I2U1I1·100%η=9,5·11220·,5·100%=95%
Ответ: 95%
Задача на трансформатор №3
Условие
Напряжение на первичной обмотке понижающего трансформатора 220 В, мощность 44 Вт. Определите силу тока во вторичной обмотке, если отношения числа витков обмоток равно 5. Потерями энергии можно пренебречь
Решение
Напряжение на вторичной обмотке будет равно:
U2=U1kU2=2205=44 В
Если считать, что потерь энергии нет, то мощность во вторичной обмотке будет такая же, как и в первичной:
I2=P2U2=44 Вт44 В=1 А
Ответ: 1А
При решении задач не забывайте проверять размерности величин!
Задача на трансформатор №4
Условие
Понижающий трансформатор включен в сеть с напряжением 1000 В и потребляет от сети мощность, равную 400 Вт. Каков КПД трансформатора, если во вторичной обмотке течет ток 3,8 А, а коэффициент трансформации равен 10?
Решение
Сначала определим напряжение на вторичной обмотке трансформатора:
U2=U1k=100010=100 В
Запишем формулу для КПД трансформатора и рассчитаем:
η=P2P1·100%=U2I2P1·100%η=100·3,8400·100%=95%
Ответ: 95%
Задача на трансформатор №5
Условие
Вторичная обмотка трансформатора, имеющая 95 витков, пронизывается магнитным потоком, изменяющимся со временем через один виток по закону Ф=,01sin100πt. Напишите формулу, выражающую зависимость ЭДС во вторичной обмотке от времени.
Решение
По закону электромагнитной индукции:
ε=-NdФdt
Продифференцируем магнитный поток по времени:
dФdt=d(,01sin100πt)dt=,01·100π·cos100πt=πcos100πt
Подставим результат в формулу для ЭДС:
ε=-Nπcos(100πt)
От минуса в данном выражении можно избавиться с помощью формул тригонометрии. Сделаем это и запишем окончательный результат:
ε=Nπsin(100πt-π2)=95πsin(100πt-π2)
Ответ: 95πsin(100πt-π2)
Гений Эйнштейна
Приведенные цитаты лишний раз доказывают, что Эйнштейн многое знал, но кроме этого, он о многом думал и многое мог рассказать. Если вы с чем-то не согласны, вы можете высказаться в нашем Telegram=чате.
Это сейчас кажется, что его цитаты в стиле ”Капитана Очевидность”, но колесо и водопровод сейчас тоже кажутся чем-то обыденным, но когда-то кто-то придумал их буквально из ничего, изменив нашу жизнь и сделав такой, какой мы ее любим.
Примерно так и с цитатами великих людей. Пусть что-то из этого является прописной истиной, но только они смогли так тонко облачить ее в слова и вывести на бумаге. Нам остается только учиться на опыте предыдущих поколений и стараться на основании этого оставить что-то грядущим. Не будь, как Вася! Будь, как Эйнштейн!
Конструкция
Конструкция устройства базируется на 4-х основных элементах. Вот из чего состоят трансформаторы:
- Магнитопровод;
- Обмотки;
- Схемы соединения обмоток 3-х фазных трансформаторов;
- Бак.
Магнитопровод
Магнитная секция прибора делается из нескольких видов материалов: электротехническая сталь, пермаллой и ферромагнетики. Конструктив устройства обычно выглядит в виде рамки, на боковых сторонах (стержнях) которой помещаются обмотки. Части рамки, свободные от катушек, называют ярмом. Встроенные преобразователи зачастую оснащаются магнитопроводами тороидальной формы.
В зависимости от пространственного положения стержней магнитопровода, магнитные системы бывают плоскими, пространственными, симметричными и несимметричными конструкциями. В трансформаторах переменного тока сердечники образуют замкнутый контур. В приборах постоянного тока магнитопроводы делаются с зазором.
Отдельные виды магнитопроводов
Обмотки
Катушки магнитопроводов состоят из множества витков провода. Витки располагаются параллельно относительно друг друга в строго последовательном порядке. Проводники тока, покрытые изоляционным лаком либо бумагой, охватывают спиралью стержни магнитопровода.
Первичная обмотка под напряжением создаёт вокруг себя магнитное поле, которое воздействует на витки второй катушки. В результате в ней индуцируется выходной электрический ток.
Схемы соединения обмоток 3-х фазных трансформаторов
В 3-х фазных трансформаторах обмотки соединяют тремя способами.
Звезда
Три обмотки сходятся одними своими концами в нейтральной точке. Бывают звёздные соединения с выводом из общей точки и без него.
Треугольник
Соединённые последовательно три обмотки образуют треугольник. У обмоток, соединённых треугольником, усложняется конструкция переключателя контактов из-за высокого напряжения.
Зигзаг
При такой схеме все три обмотки располагаются отдельно на 3 стержнях магнитопровода. Соединения катушек осуществляются встречно последовательно.
Баки, заполненные трансформаторным маслом, помимо опорной функции, обеспечивают защиту от перегрева силового оборудования. Перед заправкой герметичного бака маслом из него откачивают воздух. Ёмкости могут содержать различные добавки, активно поглощающие рассеивающий магнитный поток, не давая ему распространиться наружу.
Как определить ток холостого хода трансформатора?
Вычисление тока холостого хода трансформатора может происходить следующим образом:
- Определяем величину магнитной индукции в сердечнике трансформатора, допуская тот факт, что значение ЭДС Е1 в первичной обмотке очень близко по значению с приложенным к ней напряжением U1 где kф – коэффициент формы ЭДС,
f – частота изменения ЭДС,
ω – число витков обмотки трансформатора,
Sc – площадь сечения сердечника трансформатора.
- По кривой намагничивания материала сердечника определяем напряженность Н магнитного поля в магнитопроводе.
- Определяем реактивную IL составляющую тока холостого хода
- Находим мощность активных потерь РА в сердечнике трансформатора по графическим зависимостям мощности удельных объёмных потерь PV от индукции в сердечнике B и значению эффективного объема сердечника Ve.
- Определяем активную составляющую Ia тока холостого хода
- Определяем ток холостого хода
Полученное токам образом значение тока холостого хода практически не отличается от реальной величины тока, протекающего в первичной обмотке при работе трансформатора в режиме холостого хода.
Перенаселение Земли
Наша родная планета пока не перенаселена и даже не близка к этому. Безусловно, существуют проблемы с инфраструктурой, связанные с удовлетворением потребностей. Однако для перенаселения на планете пока недостаточно людей. Для этого потребовалось бы несколько миллиардов людей, расходующих все ресурсы и занявших всё пространство планеты. Земля достаточно велика, чтобы вместить огромное количество людей и чтобы мы могли выращивать на ней различные сельскохозяйственные культуры. Но её внутренние ресурсы и правда не бесконечны. Поэтому проблема не в том, что с увеличением населения эти ресурсы могут закончиться. Проблема в том, что людям нужно научиться правильно их расходовать и планировать их расход в будущем.
Эксплуатация
Срок службы
При правильном и своевременном обслуживании трансформаторное оборудование может прослужить до тех пор, пока морально не устареет. Срок службы зависит от условий эксплуатации, частоты возникновения аварийных ситуаций на участке электросети, где установлено оборудование.
Работа в параллельном режиме
Параллельный режим работы позволяет временно подменять мощное силовое оборудование трансформаторами средней или малой мощности. Это происходит тогда, когда на линии электропередачи падает нагрузка, что позволяет сокращать траты энергии при работе на холостом ходу.
Частота
При одинаковом напряжении частота тока может быть различной. Первичная обмотка, рассчитанная на частоту тока 50 Гц, без помех принимает входной ток частотой 60 Гц. В обратном случае трансформатор не будет полноценно исполнять свои функции. При меньшей номинальной частоте возрастает показатель индукции в сердечнике, что, как правило, вызывает резкое увеличение силы тока холостого хода. Если ток в сети имеет частоту, превышающую номинальную величину, то возникают паразитные токи в магнитопроводе. Сердечник и обмотки сильно перегреваются.
Регулирование напряжения трансформатора
Изменение напряжения в сети отображается на аналоговом экране или цифровом дисплее. Маломощные трансформаторы снабжены светодиодной индикацией уровня напряжения. С помощью органов управления устанавливается нужный уровень выходного напряжения в ручном или автоматическом режиме.
Изоляция трансформатора
Из-за частых перегревов обмоток и магнитопроводов изоляция может потерять свои диэлектрические свойства. Для осуществления контроля состояния изоляции проводятся регулярные испытания электрооборудования.
Перенапряжения трансформатора
В процессе интенсивной эксплуатации трансформаторы часто подвергаются перенапряжению. Оно бывает кратковременным и переходным.
Кратковременное превышение рабочих параметров оборудования происходит в течение от 1 секунды до нескольких часов. Переходное перенапряжение может набирать время, измеряемое в мили и наносекундах.
Перед тем, как покинуть завод-изготовитель, трансформаторы проходят тестовые испытания, в ходе которых создаются различные ситуации на грани потери работоспособности. В результате некондиция отсеивается от партии готовой продукции.
При установке того или иного трансформаторного оборудования нужно тщательно взвесить его возможности и состояние источника питания
Также принимают во внимание требуемые характеристики выходного напряжения для определённых потребителей
Идеальный трансформатор
Совершенный трансформатор, ток намагничивания которого равен нулю, называется идеальным трансформатором. Компонентные уравнения идеального трансформатора, согласно (5.23), имеют вид: Из компонентных уравнений следует, что при любом значении сопротивления нагрузки отношение напряжения вторичной обмотки к напряжению первичной обмотки идеального трансформатора равно отношению токов первичной и вторичной обмоток: (5.25) В связи с тем, что коэффициент трансформации n
является действительным числом, напряжение и ток первичной обмотки имеют такие же начальные и фазы, как соответственно напряжение и ток вторичной обмотки, и отличаются от них только по амплитуде.
Из выражений (5.25) следует, что мгновенная и комплексная мощности, потребляемые первичной обмоткой, равны мгновенной и комплексной мощностям, отдаваемым идеальным трансформатором в нагрузку: .
КПД идеального трансформатора равен единице.
Если к зажимам 2 — 2’ идеального трансформатора подключено сопротивление нагрузки Zн, то его входное сопротивление со стороны зажимов 1 – 1’ равно (5.26) Таким образом, входное сопротивление идеального трансформатора отличается от сопротивления нагрузки в n 2
раз. Это свойство трансформатора широко используется в радиоэлектронных устройствах для согласования сопротивления источника энергии с нагрузкой. В отличие от идеального, в реальном трансформаторе происходят потери энергии, он характеризуется в ряде случаев значительными паразитными емкостями, индуктивность его обмоток имеет конечное значение, а потоки рассеяния не равны нулю. Как правило, при разработке конструкции трансформатора принимается ряд мер, направленных на приближение его свойств к свойствам идеального трансформатора.
Источник
Теория и модель
Реальный трансформатор работает по принципу наведение ЭДС индукции входным переменным током. Линии магнитной индукции распространяются по ферромагнитными сердечниками и пронизывают витки вторичных обмоток. Магнитный поток порождает переменный электрический ток с такой же частотой, как на входе первичной катушки.
ЭДС индукции возникает на витках всех обмоток, а также в магнитопроводе. Вихревые токи в сердечнике создают дополнительное сопротивление. Часть мощностей переменных напряжений, поступающих в цепи первичных обмоток, расходуется на преодоление сопротивлений и выделяется в виде тепла. Поэтому КПД реального трансформатора хотя и довольно высокий, но никогда не достигает 100%.
Теоретически можно представить себе мнимый аппарат со 100-процентным КПД.
Для этого предположим, что:
- обе обмотки индуктивные;
- активное сопротивление обмоток равняется нулю;
- отсутствует гистерезис, вызванный перемагничиванием магнитопровода;
- отсутствуют токи Фуко в сердечнике;
- магнитные потоки не рассеиваются, а циркулируют по идеальному магнитопроводу.
У аппарата с такими свойствами вся энергия, поступающая на вход первичной обмотки, преобразуется в напряжение во вторичной обмотке без каких-либо потерь. То есть, мы получим идеальный трансформатор (рис. 1).
Рис. 1. Модель идеального трансформатора
На рисунке показан двухобмоточный прибор.Но нам ничего не стоит идеализировать семейство силовых трансформаторов с несколькими обмотками. Модель идеального трансформатора мы можем применить для трехфазных трансформаторов (рис. 2),и для других типов устройств, например для тороидальных трансформаторов (рис. 3).
Рис. 2. Трехфазный трансформатор
Рис. 3. Тороидальная модель трансформатора
Колебания
Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:
Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:
Период колебаний вычисляется по формуле:
Частота колебаний:
Циклическая частота колебаний:
Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:
Максимальное значение скорости при гармонических механических колебаниях:
Зависимость ускорения от времени при гармонических механических колебаниях:
Максимальное значение ускорения при механических гармонических колебаниях:
Циклическая частота колебаний математического маятника рассчитывается по формуле:
Период колебаний математического маятника:
Циклическая частота колебаний пружинного маятника:
Период колебаний пружинного маятника:
Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:
Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:
Взаимосвязь энергетических характеристик механического колебательного процесса:
Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:
Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:
Циклическая частота колебаний в электрическом колебательном контуре:
Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:
Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:
Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:
Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:
Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:
Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:
Действующее значение напряжения:
Мощность в цепи переменного тока:
Трансформатор
Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:
Коэффициент трансформации вычисляется по формуле:
Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):
В неидеальном трансформаторе вводится понятие КПД:
Волны
Длина волны может быть рассчитана по формуле:
Разность фаз колебаний двух точек волны, расстояние между которыми l:
Скорость электромагнитной волны (в т.ч. света) в некоторой среде:
Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:
Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:
При этом показатель преломления некоторого вещества можно рассчитать используя формулу:
Основы специальной теории относительности (СТО)
Релятивистское сокращение длины:
Релятивистское удлинение времени события:
Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:
Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:
Энергия покоя тела:
Любое изменение энергии тела означает изменение массы тела и наоборот:
Полная энергия тела:
Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:
Релятивистское увеличение массы:
Кинетическая энергия тела, движущегося с релятивистской скоростью:
Между полной энергией тела, энергией покоя и импульсом существует зависимость: