Расчет катушки индуктивности на стержневом сердечнике

Определение и принцип действия

Катушка индуктивности — это катушка смотанного в спираль или другую форму изолированного проводника. Основные особенности и свойства: высокая индуктивность при низкой ёмкости и активном сопротивлении.

Она накапливает энергию в магнитном поле. На рисунке ниже вы видите её условное графическое обозначение на схеме (УГО) в разных видах и функциональных назначениях.

Она может быть с сердечником и без него. При этом с сердечником индуктивность будет в разы больше, чем если его нет. От материала, из которого изготовлен сердечник, также зависит величина индуктивности. Сердечник может быть сплошным или разомкнутым (с зазором).

Напомним один из законов коммутации:

Ток в индуктивности не может измениться мгновенно.

Это значит, что катушка индуктивности — это своего рода инерционный элемент в электрической цепи (реактивное сопротивление).

Давайте поговорим, как работает это устройство? Чем больше индуктивность, тем больше изменение тока будет отставать от изменения напряжения, а в цепях переменного тока — фаза тока отставать от фазы напряжения.

В этом и заключается принцип работы катушек индуктивности – накопление энергии и задерживание фронта нарастания тока в цепи.

Из этого же вытекает и следующий факт: при разрыве в цепи с высокой индуктивностью напряжение на ключе повышается и образуется дуга, если ключ полупроводниковый — происходит его пробой. Для борьбы с этим используются снабберные цепи, чаще всего из резистора и конденсатора, установленного параллельно ключу.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек обычно включаются параллельно конденсаторам для организации колебательных контуров. Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами, что позволяет разделить по постоянному току, например, цепь базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется степень взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Дроссели включаются последовательно с нагрузкой для ограничения переменного тока в цепи, они часто применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента, а также в качестве балласта для включения разрядных ламп в сеть переменного напряжения. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца), нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.

Сдвоенный дроссель

Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный сердечник (из трансформаторной стали). Для фильтрации высокочастотных помех — сердечник ферритовый.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой намного превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющее механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Особенности расчёта индуктивных элементов с сердечниками

В отличие от индуктивных элементов без сердечников, при расчёте которых учитывался магнитный поток пронизывающий только проводник с током, магнитный поток индуктивных элементов с сердечниками практически полностью замыкается на сердечники. Поэтому при расчёте индуктивности таких элементов необходимо учитывать размеры сердечника и материал, из которого он изготовлен, то есть его магнитную проницаемость.

Обобщённую формулу для расчёта индуктивных элементов с сердечниками можно выразит с помощью следующего выражения

где ω – количество витков катушки,

RM – сопротивление магнитной цепи,

μа – абсолютная магнитная проницаемость вещества, из которого изготовлен сердечник,

SM – площадь поперечного сечения сердечника,

lM – длина средней магнитной силовой линии,

Таким образом, зная размеры сердечника можно достаточно просто вычислить индуктивность. Однако в связи с такой простотой выражения и разбросом магнитной проницаемости материала сердечника, погрешность в расчёте индуктивности составит 25 %.

Для сердечников, имеющих сложную конструктивную конфигурацию, вводится понятие эффективных (эквивалентных) размеров, которые учитывают особенности формы сердечников: эффективный путь магнитной линии le и эффективная площадь поперечного сечения Se сердечника. Тогда индуктивность катушки с сердечником будет вычисляться по формуле

где ω – количество витков катушки,

μ – магнитная постоянная, μ = 4π*10-7,

μr – относительная магнитная проницаемость вещества,

Se – эффективная площадь поперечного сечения сердечника,

le – эффективный путь магнитной линии сердечника.

Таким образом, расчёт индуктивности индуктивных элементов с сердечниками сводится к нахождению эффективных размеров сердечника. Для упрощения нахождения данных размеров сердечника ввели вспомогательные величины, называемые постоянные сердечников:

С1 – первая постоянная сердечника, которая равна сумме отношений длины однородных по сечению участков сердечника к поперечного сечения сердечника, измеряется в мм-1;

С2 – вторая постоянная сердечника, которая равна сумме отношений длин однородных по сечению участков сердечника к квадрату своего сечения, измеряется в мм-3;

где N – количество разнородных участков сердечника,

lN – длина N – го участка сердечника,

SN – площадь N – го участка сердечника.

Тогда величины Se и le определятся из следующих выражений

Кроме индуктивности с помощью постоянных С1 и С­2 определяют эффективный объём Ve, который требуется для определения параметоров силовых индуктивных элементов – трансформаторов и дросселей. Если же есть необходимость рассчитать только индуктивность L, то используют только постоянную С1 по следующему выражению

где ω – количество витков катушки,

μ – магнитная постоянная, μ = 4π*10-7,

μr – относительная магнитная проницаемость вещества,

С1 – первая постоянная сердечника, которая равна сумме отношений длины однородных по сечению участков сердечника к поперечного сечения сердечника.

Несмотря на довольно сложные формулировки и формулы, вычисление индуктивности по ним достаточно простое.

Выпускается достаточно много типов сердечников, которые обладают различными конструктивными особенностями и свойствами, рассмотрим некоторые из них.

Варианты измерения

Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.

Прямой метод

Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.

Порядок проведения измерений включает в себя следующие этапы:

  1. К прямопоказывающему приспособлению подключают катушку.
  2. После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
  3. Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.

Измерение выполняют путём проведения таких действий:

  1. Включённый мостовой прибор подсоединяют к катушке, индуктивность которой необходимо определить.
  2. Аналогично прямопоказывающему устройству проводят переключение интервалов измерений.
  3. После каждого такого действия ручку регулятора балансировки моста поочерёдно перемещают в одно и другое предельное положение.
  4. Как только удалось определить диапазон, в котором мост будет сбалансирован, можно выполнять дальнейшие действия.
  5. На следующем этапе измерений выполняется постепенное перемещение стрелочного индикатора.
  6. После того как в динамике прибора исчезнет звук, необходимо зафиксировать показатели.
  7. Затем их рассчитывают в соответствии с ценой деления шкалы и предусмотренным коэффициентом.

Вам это будет интересно Особенности трехфазного тока

Косвенное определение

Для того чтобы измерить коэффициент самоиндукции, необходимо провести несколько подготовительных мероприятий. В первую очередь нужно собрать измерительную цепь по стандартной схеме, а также подготовить все необходимые приспособления (генератор синусоидального напряжения, частотомер, а также миллиамперметр и вольтметр, рассчитанные на переменный ток).

Порядок определения параметра:

  1. К выходу генератора параллельно подключают вольтметр. Он должен быть переключён в режим, при котором верхнее предельное значение будет соответствовать напряжению в 3−5 вольт.
  2. Аналогично подсоединяют и частотомер.
  3. Отдельно собирают вторую цепь. В ней последовательно соединяют миллиамперметр и катушку, индуктивность которой нужно определить.
  4. Затем обе цепи подключают параллельно друг к другу.
  5. Подключённый генератор устанавливают в режим выработки синусоидального напряжения.
  6. Путём изменения частоты добиваются такой работы приборов, при которой вольтметр будет показывать примерно 2 вольта. При этом сила тока на миллиамперметре будет постепенно уменьшаться.
  7. После этого ручку частотомера перемещают в положение, соответствующее частоте измерений.
  8. Как только эти действия будут выполнены, можно фиксировать значения.

Полученные данные переводятся в СИ, а затем выполняются все необходимые расчёты. Первым делом определяется индуктивное сопротивление. Для этого значения приборов подставляются в следующую зависимость: X=U/I, где U — напряжение, а I — сила тока. Результат расчётов будет выражен в омах.

После этого вычисляется индуктивность по формуле L=X/2 πF. В ней используются такие условные обозначения:

  • X — индуктивное сопротивление;
  • π — математическая постоянная (примерно 3,14);
  • F — частота в герцах, при которой проводились измерения.

Индуктивность — это важный физический параметр, позволяющий определить магнитные свойства электроцепи. При точном его измерении и правильном проведении предусмотренных расчётов можно получить достоверные данные, которые понадобятся при выборе катушки.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Калькулятор расчета многослойной катушки индуктивности

На практике нередко случаются ситуации, когда при выходе со строя катушки индуктивности, ее необходимо восстановить – намотать новую проволоку взамен старой. При этом вам уже известны геометрические параметры катушки, но требуется узнать, сколько сделать витков, слоев, их толщину и длину необходимого для этого провода. Стоит отметить, что при намотке витки должны ложиться вплотную без зазора.

Для расчета индуктивности многослойной катушки используется такая формула:

  • d – сумма диаметра каркаса и толщины намотки только с одной стороны;
  • n – количество витков;
  • g – толщина намотанной проволоки;
  • h – высота намотанной проволоки;

Из этой формулы, зная величину индуктивности, можно вывести толщину намотки:

Для определения количества витков необходимо воспользоваться формулой:

  • d­пр – диаметр провода
  • h – высота катушки;
  • g – толщина намотки.

Расчет количества витков

Длину одного витка можно определить следующим образом:

Где π – это константа, а dвит_— это диаметр витка.

Тогда, зная общее число витков и принимая, что d – это усредненное значение диаметра для всех витков, длина всего провода будет определяться по формуле:

Через сопротивление провода можно определить его диаметр, для чего понадобится выразить сопротивление через геометрические параметры устройства.

где ρ – удельное сопротивление металла, из которого изготовлен проводник, а S – площадь проводника, которая определяется по формуле:

Подставив значение площади и длины провода, получим такое выражение для определения сопротивления:

Из значения сопротивления можно вывести формулу для определения диаметра провода, подставив предварительно формулу для вычисления количества витков:

После получения величины диаметра провода, можно определить количество витков, которое подставляется с остальными данными в первую формулу для расчета индуктивности.

Число слоев можно определить, разделив толщину намотки на диаметр провода:

Посредством вышеприведенных вычислений можно определить все параметры многослойной катушки индуктивности, которые помогут вам изготовить устройство с нужными параметрами. Также, чтобы облегчить вычисления вы можете воспользоваться нашим онлайн калькулятором ниже.

Виды и типы катушек

В зависимости от сферы применения и частоты цепи может отличаться конструкция катушки.

По частоте можно условно разделить на:

  • Низкочастотные. Пример — дроссель люминесцентной лампы, трансформатор (каждая обмотка представляет собой катушку индуктивности), реактор, фильтры электромагнитных помех. Сердечники чаще всего выполняются из электротехнической стали, для цепей переменного тока из листов (шихтованный сердечник).
  • Высокочастотные. Например, контурные катушки радиоприемников, катушки связи усилителей сигнала, накопительные и сглаживающие дроссели импульсных блоков питания. Их сердечник изготавливают обычно из феррита.

Конструкция отличается в зависимости от характеристик катушки, например, намотка может быть однослойной и многослойной, намотанной виток к витку или с шагом. Шаг между витками может быть постоянным или прогрессивным (изменяющимся по длине катушки). Способ намотки и конструкция влияют на конечные размеры изделия.

Отдельно стоит рассказать о том, как устроена катушка с переменной индуктивностью, их еще называют вариометры. На практике можно встретить разные решения:

  • Сердечник может двигаться относительно обмотки.
  • Две обмотки расположены на одном сердечнике и соединены последовательно, при их перемещении изменяется взаимоиндукция и индуктивная связь.
  • Сами витки для настройки контура могут раздвигаться или сужаться приближаясь друг к другу (чем плотнее намотка — тем больше индуктивность).

И так далее. При этом подвижная часть называется ротором, а неподвижная — статором.

По способу намотки бывают также различными, например, фильтры со встречной намоткой подавляют помехи из сети, а намотанные в одну сторону (согласованная намотка) подавляют дифференциальные помехи.

Где применяются катушки индуктивности

Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.

Совместно с резисторами или , катушки задействованы в различных цепях, имеющих частотно-зависимые свойства. Прежде всего, это фильтры, колебательные контуры, цепи обратной связи и прочее. Все виды этих приборов способствуют накоплению энергии, преобразованию уровней напряжения в импульсном стабилизаторе.

При индуктивной связи между собой двух и более катушек, происходит образование трансформатора. Эти приборы могут использоваться, как электромагниты, а также, как источник энергии, возбуждающий индуктивно связанную плазму.

Индуктивные катушки успешно используются в радиотехнике, в качестве излучателя и приемника в конструкциях кольцевых и , работающих с электромагнитными волнами.

Сварка с применением давления, при которой соединение осуществляется в результате соударения свариваемых частей, вызнанного воздействием импульсного магнитного поля. [Терминологический словарь по строительству на 12 языках (ВНИИИС… … Справочник технического переводчика

ГОСТ 20938-75: Трансформаторы малой мощности. Термины и определения
— Терминология ГОСТ 20938 75: Трансформаторы малой мощности. Термины и определения оригинал документа: 73. Асимметрия обмоток трансформатора малой мощности Асимметрия обмоток D. Wicklungsunsymmetrie des Kleintransformators E. Winding asymmetry F.… … Словарь-справочник терминов нормативно-технической документации

Трансформатор Тесла
— Разряды с провода на терминале Трансформатор Тесла, также катушка Тесла (англ. … Википедия

ГОСТ Р 52002-2003: Электротехника. Термины и определения основных понятий
— Терминология ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа: 128 (идеальный электрический) ключ Элемент электрической цепи, электрическое сопротивление которого принимает нулевое либо бесконечно… … Словарь-справочник терминов нормативно-технической документации

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС
— (ЯМР), избирательное поглощение эл. магн. энергии в вом, обусловленное ядерным парамагнетизмом. ЯМР один из методов радиоспектроскопии, наблюдается, когда на исследуемый образец действуют взаимно перпендикулярные магн. поля: сильное постоянное Н0 … Физическая энциклопедия

ГОСТ Р ИСО 857-1-2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения
— Терминология ГОСТ Р ИСО 857 1 2009: Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения оригинал документа: 6.4 автоматическая сварка: Сварка, при которой все операции механизированы (см. таблицу 1).… … Словарь-справочник терминов нормативно-технической документации

Словарь метротерминов
— Эта страница глоссарий. Приведены основные понятия, термины и аббревиатуры, встречающиеся в литературе о метрополитене и железной дороге. Подавляющее большинство сокращений пришли в метрополитен с железной дороги напрямую или образованы по… … Википедия

Искусственная линия
— электрическая, электрическая цепь, составленная из нескольких последовательно включенных звеньев, содержащих катушки индуктивности и конденсаторы. И. л. применяются в электротехнических и радиотехнических устройствах, главным образом… … Большая советская энциклопедия

Импульсный стабилизатор напряжения
— Импульсный стабилизатор напряжения это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… … Википедия

ГОСТ 13699-91: Запись и воспроизведение информации. Термины и определения
— Терминология ГОСТ 13699 91: Запись и воспроизведение информации. Термины и определения оригинал документа: 241 (воспроизводящая) игла: Игла, следующая по канавке записи механической сигналограммы с целью воспроизведения информации Определения… … Словарь-справочник терминов нормативно-технической документации

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику
с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности
. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – и .

Общие свойства катушек индуктивности

В зависимости от требуемой индуктивности и частоты, на которой катушка будет работать, она может иметь самые различные исполнения.

Для высоких частот это может быть простая катушка состоящая из нескольких витков провода или же катушка с сердечником из ферромагнитного материала и иметь индуктивность от нескольких наногенри до нескольких десятков миллигенри. Такие катушки применяются в радиоприемной, передающей, измерительной аппаратуре и т.п.

Катушки, работающие на высоких частотах, можно разделить на катушки контуров, катушки связи и дроссели высокой частоты. В свою очередь катушки контуров могут быть с постоянной индуктивностью и переменной индуктивностью (вариометры).

По конструктивному признаку высокочастотные катушки разделяются на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными и немагнитными сердечниками, бескаркасные, цилиндрические плоские и печатные.

Для работы в цепи переменного тока низкой частоты, на звуковых частотах, во входных фильтрах блоков питания, в цепях питания осветительного электрооборудования применяются катушки с достаточно большой индуктивностью. Их индуктивность достигает десятки и даже сотни генри, а в обмотках могут создаваться большие напряжения и протекать значительные токи.

Для увеличения индуктивности при изготовлении таких катушек применяют магнитопроводы (сердечники), собранные из отдельных тонких изолированных пластин сделанных из специальных магнитных материалов – электротехнических сталей, пермаллоев и др.

Применение наборных магнитопроводов обусловлено тем, что под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, образуются вихревые токи, которые нагревают магнитопровод, бесполезно потребляя часть энергии магнитного поля. Изоляция же между слоями стали оказывается на пути вихревых токов и значительно снижает потери.

Катушки с магнитопроводами из изолированных пластин можно разделить на дроссели и трансформаторы.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

 Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Облегчайзинг

Чтобы уменьшить вес катушки, было решено выпилить некоторые участки конструкции:

Данная манипуляция позволила скинуть 168 грамм лишнего веса. При этом прочность датчика практически не уменьшилась, в чем можно убедиться благодаря данному видео:

Теперь задним умом понимаю, как можно было изготовить катушку еще немного легче. Для этого надо было заранее наделать больших отверстий в среднем блинчике (перед тем, как все склеивать). Что-то типа такого:

Пустоты внутри конструкции почти не сказались бы на прочности, но зато снизили бы общую массу еще грамм на 20-30. Сейчас, конечно, уже поздняк метаться, но на будущее учту.

Еще один путь облегчения конструкции датчика — уменьшить ширину наружного кольца (где уложены витки провода) миллиметров на 6-7. Конечно, это можно сделать и сейчас, но пока нет такой необходимости.

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.

В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Применение катушек индуктивности

Катушки индуктивности используются в электрических цепях переменного тока. Они обычно применяются в аналоговых схемах, схемах обработки сигналов и в системах телекоммуникаций, а также используются вместе с конденсаторами для создания фильтров различных топологий. В телекоммуникационных системах индуктивности применяются в составе специальных фильтров, которые нужны для подавления возможных бросков напряжения и предотвращения утечки информации через линии системы электропитания.

Трансформаторы, которые используются для повышения или понижения напряжения переменного тока, состоят из двух катушек индуктивности, объединенных в единую конструкцию определенным образом. Индуктивности также используются для временного хранения электрической энергии в цепях выборки-хранения и источниках бесперебойного питания. В цепях электропитания катушки индуктивности (где они называются фильтрующими дросселями) используются для сглаживания пульсирующих токов.

Поведение индуктивности при прохождении через нее сигнала можно определить следующим образом:

  • Всякий раз, когда приложенное к катушке индуктивности напряжение увеличивается, катушка генерирует обратную ЭДС, в результате чего ток через нее падает с максимального значения до нуля или даже ниже этого уровня. Всякий раз, когда прикладываемое напряжение уменьшается, катушка создает прямую ЭДС, в результате чего ток через нее повышается с нуля или текущего уровня до максимального значения или даже до более высокого.
  • Обратная или прямая ЭДС сохраняется на катушке индуктивности до тех пор, пока приложенное напряжение, а следовательно и ток через нее изменяются. Когда приложенное напряжение достигает определенного постоянного значения, обратная или прямая ЭДС падает до нуля, и постоянный ток протекает через катушку индуктивности без какого-либо противодействия, как в обычном соединительном проводе.
  • Из-за наличия индуктивности скорость изменения тока в цепи замедляется. Если сигнал переменный, то ток всегда будет отставать от напряжения на 90° из-за наличия индуктивности.
  • Благодаря индуктивному или емкостному сопротивлению потери энергии отсутствуют. Энергия, запасенная катушкой индуктивности в форме магнитного поля или конденсатором в форме электростатического поля, возвращается обратно в цепь, как только приложенное напряжение падает до нуля или меняет полярность. Однако из-за реактивного сопротивления пиковый уровень тока (амплитуда сигнала) ограничен.

История создания катушки индуктивности

Катушки индуктивности наматываются фиксированным числом проводов. Этот факт  скрывают на уроках физики, избегая забивать ученикам мозги. Потом догадываются бедняги, пытаясь уловить смысл термина бифилярная обмотка двигателя. Нитей бывает больше, выделяют катушки индуктивности:

  • трифилярные;
  • тетрафилярные;
  • пентафилярные.

Обычные катушки индуктивности называют унифилярными – нить проволоки одна. Сразу возникает справедливый вопрос – зачем конструкции? Изобретатель катушку индуктивности неизвестен. Ответы дают, виноват Тесла… Далеко от истины.

Дроссель

Один знаток Майл.ру – не исключено, админ ресурса – ответил: отцом катушек индуктивности является Майкл Фарадей, якобы, открыл магнитную индукцию (согласно англоязычной страничке Википедии). Напрашивается вывод, историковед не владеет вопросом. Главная причина критики “Ответов” Майл – некомпетентность. Фарадей открыл индукцию, применив тороидальный трансформатор с двумя изолированными обмотками. Намного сложнее конструкция, нежели катушка, явление заключалось сопровождалось выходом скачка тока при изменении магнитного поля сердечника.

Произошло описанное в 1831 году, первый электромагнит сконструирован малоизвестным в России Уильямом Стердженом. Знаете, как выглядел прибор? Правильно – катушка индуктивности из 18 витков оголенной медной проволоки с хорошим лакированным ферромагнитным сердечником формы лошадиной подковы. При пропускании по обмотке тока железо в округе притягивалось устройством. Годом выхода первого электромагнита в свет историки считают 1824. Раньше, нежели Фарадей начал эксперименты.

Наставник Хампфри Дэви счел работу плагиатом. Ученик не решался продолжить, конфликтовать открыто. Получилось, в 1829 году безвременно Хампфри Дэви ушел из жизни, благодаря чему Майкл Фарадей возобновил работу. Не потому считаем неверными скудные сведения рунета по рассматриваемому вопросу. Вторая причина кроется в гальванометрах: первый сконструирован 16 сентября 1820 года Иоганном Швейггером. Годом позже великий Ампер усовершенствовал прибор, угадайте, что входило в состав новинки? Правильно – катушка индуктивности, составленная несколькими витками проволоки.

В 1826 году Феликс Савари разряжал лейденскую банку через несколько витков проволоки, обмотанной вокруг стальной иглы. Наблюдая остаточную намагниченность металла. Фактически Савари создал первый колебательный контур, правильно сделав выводы о происходящих процессах.

Майкл Фарадей бессилен стать изобретателем индуктивности. Скорее ученый работал в этом направлении, вел некоторые исследования, получил новый закон касательно электромагнетизма. В результате вопрос об изобретателе катушки индуктивности оставляем открытым. Рискнем предположить, у субъекта темы два отца:

Лаплас и Швейггер

  1. Лаплас на основе доклада Эрстеда высказал предположение: действие тока на магнитную стрелку можно усилить, изогнув провод.
  2. Швейггер реализовал услышанное на практике, создав первый в мире гальванометр, использовав доклады Ампера о зависимости угла отклонения стрелки от силы тока.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: