Термоэлектрический эффект зеебека: история, особенности и применение

Устройство термоэлектрогенератора своими руками

Столь сложные процессы, которые протекают в ТЭГ, никак не останавливают местных «кулибиных» в стремлении присоединится к мировому научно-техническому процессу по созданию ТЭГ. Использование самодельных ТЭГ применяется уже давно. Во время Великой Отечественной войны партизаны делали универсальный термоэлектрогенератор. Он вырабатывал электрический ток для зарядки рации.

С появлением на рынке элементов Пельтье по доступными для бытового потребителя ценам возможно сделать ТЭГ самому, выполнив следующие шаги.

  1. Приобрести два радиатора в магазине IT и применить термопасту. Последняя облегчит соединение элемента Пельтье.
  2. Разделить радиаторы любым теплоизолятором.
  3. Сделать отверстие в изоляторе для размещения элемента Пельтье и проводов.
  4. Собрать конструкцию, и поднести источник тепла (свеча) к одному из радиаторов. Чем дольше нагрев, тем больше тока будет вырабатываться из домашнего термоэлектрического генератора.

Работает такой прибор бесшумно, и имеет небольшой вес. Термоэлектрический генератор ic2 в зависимости от размера, может подключить зарядку мобильного телефона, включить небольшой радиоприемник и светодиодное освещение.

В настоящее время многие известные мировые производители начали выпуск различных доступных гаджетов с применением ТЭГ для автолюбителей и путешественников.

Эффект Зеебека и Пельтье

Суть эффекта Зеебека заключается в образовании электродвижущей силы в электрическом контуре, в состав которого входят проводники А и В, контакты которых обладают разными температурами Т1 и Т2. Данные свойства позволяют выполнять прямое преобразование тепловой энергии в электрическую.

В результате широкое применение в различных областях получил эффект Зеебека, формула которого определяет термо-ЭДС контура: где значения SA и SB являются абсолютными термоэлектродвижущими силами проводников А и В. Абсолютная термо-ЭДС относится к одной из характеристик проводника и представляет собой S=du/dT, где u является электродвижущей силой, возникающей в проводнике при наличии в нем разницы температур. Таким образом, теоретические основы эффекта Зеебека тесным образом связаны с температурными перепадами.

Элемент Пельтье является полной противоположностью устройствам, созданным на основе эффекта Зеебека. В данном случае, наоборот, под действием электрического тока образуется разница температур на рабочих площадках конструкции. Таким образом, с помощью электрического тока осуществляется перенос тепла с одной термопары на другую. При изменении направления тока нагреваемая сторона будет принимать противоположное состояние.

Данный эффект происходит в двух разнородных проводниках с одинаковой проводимостью. В каждом из них электроны обладают разным значением энергии и расположены они на очень близком расстоянии между собой. В результате произойдет перенос зарядов из одной среды в другую, и электроны с более высокой энергией на фоне низких уровней, отдадут излишки кристаллической решетке, вызывая нагрев. При недостатке энергии она, наоборот, передается от кристаллической решетки, приводя к охлаждению спая.

В случае неодинакового типа проводимости, полупроводников присутствующих в термопаре, эффект Пельтье будет выглядеть несколько иначе. При попадании в р-материал, электрон занимает место дырки на энергетическом уровне. В результате, у него теряется кинетическая энергия движения и наступает изменение состояния. Высвобожденная энергия способствует образованию свободных носителей с обеих сторон р-п-перехода, а оставшаяся часть уходит на кристаллическую решетку, которая и вызывает нагрев. Если в начальный момент значение энергии меньше, то спай начнет охлаждаться.

Что такое пьезоэлектрический эффект

Скин-эффект. Принцип работы

Термопара: принцип работы

Применение электрического тока в металлах

Чем отличаются проводники от полупроводников

От чего зависит сопротивление проводника

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Эффект Томсона

В различных материалах коэффициент Зеебека непостоянен по температуре, поэтому пространственный градиент температуры может привести к градиенту коэффициента Зеебека. Если через этот градиент пропускается ток, возникает непрерывная версия эффекта Пельтье. Этот Эффект Томсона был предсказан и позже обнаружен в 1851 г. Лорд Кельвин (Уильям Томсон). Он описывает нагрев или охлаждение проводника с током с градиентом температуры.

Если плотность тока J{ displaystyle mathbf {J}} проходит через однородный проводник, эффект Томсона предсказывает скорость производства тепла на единицу объема

q˙=−KJ⋅∇Т,{ displaystyle { dot {q}} = — { mathcal {K}} mathbf {J} cdot nabla T,}

куда ∇Т{ displaystyle nabla T} — температурный градиент, а K{ Displaystyle { mathcal {K}}} — коэффициент Томсона. Коэффициент Томсона связан с коэффициентом Зеебека как K=ТdSdТ{ Displaystyle { mathcal {K}} = Т { tfrac {dS} {dT}}} (видеть ). Однако это уравнение не учитывает джоулева нагрев и обычную теплопроводность (см. Полные уравнения ниже).

Открытие Томаса Иоганна Зеебека

В 1821 году эстонско-немецкий физик Томас Зеебек провел один любопытный эксперимент: он соединил между собой две пластины, которые были изготовлены из разных материалов (висмут и медь) в замкнутый контур. Затем он нагрел один из контактов. Ученый наблюдал, что магнитная стрелка компаса, который находился поблизости от проводящего контура, начала изменять свое направление. В итоге ученый решил, что два материала (медь и висмут) поляризуются по-разному в результате действия тепла, поэтому определил открытый эффект как термомагнитный, а не термоэлектрический.

Впоследствии уже датский ученый Ханс Эрстед дал правильное объяснение открытому Зеебеком эффекту, назвав его термоэлектрическим процессом.

Эффект Томсона (Кельвина)

Он также входит в список термоэлектрических явлений. Открыл его лорд Кельвин (Уильям Томсон) в 1851 году. Он объединяет явления, наблюдаемые Пельтье и Зеебеком. Суть эффекта Томсона следующая: если на концах проводника создать разную температуру, а затем приложить к ним напряжение, то проводник начнет обмениваться теплом с окружающей средой. То есть он может не только его выделять, но и поглощать, что зависит от полярности потенциалов и разности температур на концах.

Отличие этого эффекта от двух предыдущих заключается в том, что он реализуется на одном, а не на двух разных проводниках.

Все три термодинамических эффекта связаны математически друг с другом.

Полные термоэлектрические уравнения

Часто в работе реального термоэлектрического устройства задействовано несколько из перечисленных выше эффектов. Эффект Зеебека, эффект Пельтье и эффект Томсона могут быть собраны вместе последовательным и строгим способом, описанным здесь; это также включает эффекты Джоулевое нагревание и обычная теплопроводность. Как указано выше, эффект Зеебека генерирует электродвижущую силу, приводящую к уравнению тока

J=σ(−∇V−S∇Т).{ displaystyle mathbf {J} = sigma (- { boldsymbol { nabla}} V-S nabla T).}

Чтобы описать эффекты Пельтье и Томсона, мы должны рассмотреть поток энергии. Если температура и заряд меняются со временем, полное термоэлектрическое уравнение для накопления энергии е˙{ displaystyle { dot {e}}}, является

е˙=∇⋅(κ∇Т)−∇⋅(V+Π)J+q˙доб,{ displaystyle { dot {e}} = nabla cdot ( kappa nabla T) — nabla cdot (V + Pi) mathbf {J} + { dot {q}} _ { text { ext}},}

куда κ{ displaystyle kappa} это теплопроводность. Первый член — это , а второй член показывает энергию, переносимую токами. Третий срок, q˙доб{ displaystyle { dot {q}} _ { text {ext}}}, это тепло, добавленное от внешнего источника (если применимо).

Если материал достиг устойчивого состояния, распределения заряда и температуры стабильны, поэтому е˙={ displaystyle { dot {e}} = 0} и ∇⋅J={ Displaystyle набла cdot mathbf {J} = 0}. Используя эти факты и второе соотношение Томсона (см. Ниже), уравнение теплопроводности можно упростить до

−q˙доб=∇⋅(κ∇Т)+J⋅(σ−1J)−ТJ⋅∇S.{ displaystyle — { dot {q}} _ { text {ext}} = nabla cdot ( kappa nabla T) + mathbf {J} cdot left ( sigma ^ {- 1} mathbf {J} right) -T mathbf {J} cdot nabla S.}

Средний член — это нагрев Джоуля, а последний член включает в себя как Пельтье (∇S{ displaystyle nabla S} на стыке) и Томсон (∇S{ displaystyle nabla S} в тепловом градиенте) эффекты. В сочетании с уравнением Зеебека для J{ displaystyle mathbf {J}}, это может быть использовано для определения стационарных профилей напряжения и температуры в сложной системе.

Если материал не находится в устойчивом состоянии, полное описание должно включать динамические эффекты, например, относящиеся к электрическому емкость, индуктивность и теплоемкость.

Термоэлектрические эффекты выходят за рамки равновесной термодинамики. Они обязательно включают непрерывные потоки энергии. По крайней мере, они включают в себя три тела или термодинамические подсистемы, расположенные определенным образом, наряду с особым расположением окружения. Три тела — это два разных металла и область их соединения. Область сочленения представляет собой неоднородное тело, считающееся стабильным, не подвергающимся слиянию за счет диффузии материи. Окрестности устроены так, чтобы поддерживать два резервуара температуры и два резервуара электрического тока. Для воображаемого, но не возможного термодинамического равновесия высокая температура Передача из горячего резервуара в холодный должна быть предотвращена за счет специально согласованной разности напряжений, поддерживаемой электрическими резервуарами, а электрический ток должен быть равен нулю. Фактически, для устойчивого состояния должна быть хотя бы некоторая теплопередача или некоторый ненулевой электрический ток. Два режима передачи энергии — тепло и электрический ток — можно различить, когда есть три отдельных тела и определенное расположение окружения. Но в случае непрерывного изменения среды теплопередача и термодинамическая работа нельзя однозначно отличить. Это сложнее, чем часто рассматриваемые термодинамические процессы, в которых связаны всего две соответственно однородные подсистемы.

Ячейка Пельтье

Когда говорят о петентах на термо генераторные модули с эффектом Зеебека, то, конечно же, первым делом вспоминают про ячейку Пельтье. Она представляет собой компактное устройство (4x4x0,4 см), изготовленное из ряда последовательно соединенных проводников n- и p-типа. Изготовить ее можно своими руками. Эффекты Зеебека и Пельтье лежат в основе ее работы. Напряжения и токи, с которыми она работает, невелики (3-5 В и 0,5 A). Как было сказано выше, КПД ее работы очень маленький (≈10 %).

Применяется она для решения таких бытовых задач, как нагрев или охлаждение воды в кружке или подзарядка мобильного телефона.

Источник

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Основные понятия и законы электростатики

Закон Кулона:сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности в этом законе

В СИ коэффициент k записывается в виде

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:

 Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением

Электроёмкостью тела называют величину отношения

Основные понятия и законы постоянного тока

Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

 При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

 Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции. Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:

Основные понятия и законы электромагнитной индукции

 Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).

 Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой

 Период свободных колебаний в контуре определяется формулой Томсона:

 Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:

Теги

Акушерство
Антиноцицептивное действие
Бруцеллез
Гурты
Денежная оценка земель
Земельный кадастр
КЛЕЩЕЙ
Киста
Нарисна геометрія
Пастереллез
Половой цикл
Реалізація зерна
Сальмонеллез
Случка
Туберкулез
Туберкулин
Устройство территории
аборт
актиномикоз
блохи
бонитировка почв
виробництво зерна
гінекологія
документ
дрожжи
ефективності виробництва
жеребец
животноводство
заплідненость
землепользование
клещ
косячная случка
мтп
оценка земель
паратиф
почва
противоэрозионных
ринок зерна
самосогревания
спермії
столовые вина
сухие вина
тесты по химии
шейка матки
эндометрит

Магнитная индукция. Линии магнитной индукции

Подробности
Просмотров: 1003

«Физика — 11 класс»

Электрическое поле характеризуется напряженностью электрического поля.
Напряженность электрического поля — это величина векторная.
Магнитное поле характеризуется магнитной индукцией.
Магнитная индукция — это векторная величина, она обозначается буквой .

Направление вектора магнитной индукции

За направление вектора магнитной индукци принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности, плоскость которой перпендикулярна проводу, а центр ее лежит на оси провода.

Правило буравчика

Направление вектора магнитной индукции устанавливают с помощью правила буравчика.Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.

Линии магнитной индукции

Магнитное поле можно показать с помощью линий магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым в любой их точке совпадают с вектором в данной точке поля. Линии вектора магнитной индукции аналогичны линиям вектора напряженности электростатического поля.

Линии магнитной индукции можно сделать видимыми, воспользовавшись железными опилками.

Магнитное поле прямолинейного проводника с током

Для пряого проводника с током линии магнитной индукции являются концентрическими окружностями, лежащими в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии.

Магнитное поле катушки с током (соленоида)

Если длина соленоида много больше его диаметра, то магнитное поле внутри соленоида можно считать однородным.
Линии магнитной индукции такого поля параллельны и находятся на равных расстояниях друг от друга.

Магнитное поле Земли

Линии магнитной индукции поля Земли подобны линиям магнитной индукции поля соленоида.
Магнитная ось Земли составляет с осью вращения Земли угол 11,5°.
Периодически магнитные полюсы меняют свою полярность.

Вихревое поле

Итак, магнитное поле — это вихревое поле, в каждой его точке вектор магнитной индукции указывает магнитная стрелка, направление вектора магнитной индукции можно определить по правилу буравчика.

Следующая страница «Модуль вектора магнитной индукции. Сила Ампера»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы

Принципы

Базовая термоэлектрическая сборка.

На рисунке напротив показана основная термоэлектрическая схема. Два проводящих материала разной природы a и b соединены двумя переходами, расположенными в точках X и W. В случае эффекта Зеебека разница температур dT применяется между W и X, что приводит к появлению разности потенциалов dV. между Y и Z.

В разомкнутой цепи коэффициент Зеебека пары материалов, S ab , или термоэлектрическая мощность , определяется как:

Sвбзнак равноdVdТзнак равноVY-VZТW-ТИкс{\ displaystyle S_ {ab} = {\ frac {dV} {dT}} = {\ frac {V_ {Y} -V_ {Z}} {T_ {W} -T_ {X}}} \,}

Если для T W > T X разность потенциалов такова, что V Y > V Z , то S ab положительна.

Коэффициент Зеебека каждого из материалов связан с коэффициентом крутящего момента соотношением:

Sвбзнак равноSб-Sв{\ Displaystyle S_ {ab} = S_ {b} -S_ {a} \,}

Коэффициент Зеебека выражается в ВК -1 (или, в более общем смысле, в мкВ К -1, учитывая значения этого коэффициента в обычных материалах).

Уильям Томсон (лорд Кельвин) показал, что коэффициент Зеебека связан с коэффициентами Пельтье и Томсона согласно:

Πвбзнак равноSвбТ{\ Displaystyle \ Pi _ {ab} = S_ {ab} T \,}
τвзнак равноТdSвdТ{\ displaystyle \ tau _ {a} = T {\ frac {dS_ {a}} {dT}} \,}

где Π ab — коэффициент Пельтье пары, T — температура (в Кельвинах) рассматриваемого перехода, а τ коэффициент Томсона одного из материалов.

Суть открытого эффекта

Из пункта выше можно самостоятельно сделать вывод о том, что представляет собой это термоэлектрическое явление. Его суть заключается в следующем: если соединить два любых материала между собой в один контур и подвергнуть их контакты разности температуры, то в контуре потечет ток.

Заметим, что для наблюдения этого эффекта должны выполняться следующие условия:

  • Наличие замкнутого контура (электрический ток не существует в разорванной цепи).
  • Наличие контакта из двух разнородных металлов (если проводники, приводимые в контакт, будут сделаны из одного материала, то никакой разности потенциалов не будет наблюдаться). Этими материалами могут быть такие пары, как металл и другой металл, металл и полупроводник или два полупроводника разного типа (p и n).
  • Наличие разности температур между двумя контактами проводников. Эта разность лежит в основе явления возникновения ЭДС (сила электродвижущая). Отметим, что нагревать (охлаждать) следует именно контакт двух материалов, а не какой-либо один из них.

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

Что такое фоторезистор.
Читать далее

Маркировка SMD транзисторов.
Читать далее

Как сделать датчик движения своими руками.
Читать далее

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Что такое ЭДС.

Открытие Томаса Иоганна Зеебека

В 1821 году эстонско-немецкий физик Томас Зеебек провел один любопытный эксперимент: он соединил между собой две пластины, которые были изготовлены из разных материалов (висмут и медь) в замкнутый контур. Затем он нагрел один из контактов. Ученый наблюдал, что магнитная стрелка компаса, который находился поблизости от проводящего контура, начала изменять свое направление. В итоге ученый решил, что два материала (медь и висмут) поляризуются по-разному в результате действия тепла, поэтому определил открытый эффект как термомагнитный, а не термоэлектрический.

Впоследствии уже датский ученый Ханс Эрстед дал правильное объяснение открытому Зеебеком эффекту, назвав его термоэлектрическим процессом.

пресс гидравлический для пробивки отверстий пгпо-60 квт

Менделеева, как это написано на названии во всей научно-технической и популярной литературе. Чтобы перейти к построению безъядерной электроатомной электрозарядовой модели необходимо было получить экспериментальные подтверждения, не вызывающие сомнений и они нашлись при исследовании трибоэлектричества, материаловедения и в технологии электропластической деформации металлов под давлением. Мало того, первоисточник электрических зарядов трибогенератор Ван дер Граафа исключён из программы школьного и вузовского образования, что наносит серьёзный ущерб проблемам познания электровещества, электричества и процессов, происходящих в электровеществе и на поверхностях между электровеществами при различных взаимодействиях. Ряд научно-исследовательских и опытно-конструкторских работ в области трибоэлектрических явлений, в физике твёрдого тела, при создании преобразователей и накопителей электрических зарядов свинцово кислотных аккумуляторов и технологических разработок позволили по-другому посмотреть на модели атомов. В указанных материалах показано, что при трении любых, без исключения, материалов трибогенерируется только постоянный электроатомарный электрический ток, а, как известно, в постоянном токе отрицательная составляющая заряда электроатома отсутствует.

БТГ генераторы будьте осторожны не попадайтесь на развод секретов Бизнеса фан канал сайта-библиотеки секретов. Пример некачественной рекламы в интернете.

Диоген Лаэртский. Что же Бог хочет сказать, говоря, что я мудрее всех? Ведь не лжёт же он: не пристало ему это. Потом прибегнул я к такому разрешению вопроса: пошёл я к одному из тех людей, которые слывут мудрыми… Но когда я присмотрелся к этому человеку, когда я побеседовал с ним, решил, что этот человек только кажется мудрым и многим другим людям, и особенно самому себе, а чтобы в самом деле он был мудрым, этого нет. Потом я попробовал показать ему, что он только мнит себя мудрым, а на самом деле не мудр. Из-за этого и сам он, и многие из присутствующих возненавидели меня.

Современный мир — и каждый из нас, полностью зависит от электричества. Все приборы, начиная от бытовых и заканчивая промышленными, работают на электрической энергии. Человек вынужден платить за свет, тепло и прочие ресурсы, работающие за счёт электричества. Генераторы разового пуска позволят каждому иметь собственное электричество, за которое не нужно платить.

Как описывают это термоэлектрическое явление?

Очень просто, для этого вводят некий параметр S, который получил название коэффициента Зеебека. Параметр показывает, ЭДС величины индуцируется, если поддерживается разность температур контактов равная 1 Кельвину (градусу Цельсия). То есть можно записать:

Здесь ΔV — ЭДС цепи (напряжение), ΔT — разность температур горячего и холодного спаев (зон контакта). Эта формула является лишь приближенно верной, поскольку S в общем случае зависит от температуры.

Значения коэффициента Зеебека зависят от природы материалов, вступивших в контакт. Тем не менее однозначно можно сказать, что для металлических материалов эти значения равны единицам и десяткам мкВ/К, в то время как для полупроводников они составляют сотни мкВ/К, то есть полупроводники обладают на порядок большей термоэлектрической силой, чем металлы. Причиной этого факта является более сильная зависимость характеристик полупроводников от температуры (проводимость, концентрация носителей заряда).

Открытие Томаса Иоганна Зеебека

В 1821 году эстонско-немецкий физик Томас Зеебек провел один любопытный эксперимент: он соединил между собой две пластины, которые были изготовлены из разных материалов (висмут и медь) в замкнутый контур. Затем он нагрел один из контактов. Ученый наблюдал, что магнитная стрелка компаса, который находился поблизости от проводящего контура, начала изменять свое направление. В итоге ученый решил, что два материала (медь и висмут) поляризуются по-разному в результате действия тепла, поэтому определил открытый эффект как термомагнитный, а не термоэлектрический.

Впоследствии уже датский ученый Ханс Эрстед дал правильное объяснение открытому Зеебеком эффекту, назвав его термоэлектрическим процессом.

Заключение

Если в проводнике создать электрическое поле и не поддерживать это поле, то перемещение носителей тока приведет к тому, что поле внутри проводника исчезнет, и ток прекратится. Для того чтобы поддерживать ток в цепи достаточно долго, необходимо осуществить движение зарядов по замкнутой траектории, то есть сделать линии постоянного тока замкнутыми. Следовательно, в замкнутой цепи должны быть участки, на которых носители заряда будут двигаться против сил электростатического поля, то есть от точек с меньшим потенциалом к точкам с большим потенциалом. Это возможно лишь при наличии неэлектрических сил, называемых сторонними силами. Сторонними силами являются силы любой природы, кроме кулоновских.

Дополнительную информацию о предмете статьи можно узнать из файла «Электродвижущая сила в цепях электрического тока». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.booksite.ru

www.scsiexplorer.com.ua

www.samelectrik.ru

www.electricalschool.info

www.sxemotehnika.ru

www.zaochnik.ru

www.ido.tsu.ru

Мне нравится1Не нравится2

Предыдущая
ТеорияЧто такое термопара: об устройстве простыми словами
Следующая
ТеорияЧто такое заземление простыми словами

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: