Коэффициент трансформации трансформатора тока и напряжения

Виды электросчетчиков

Каждый хозяин, прежде чем совершить покупку оборудования для контроля расхода электроэнергии, должен понимать, что работа такого устройства будет зависеть от принципа действия. Именно принцип действия счетчиков электроэнергии разделяет их на два основных вида: электронные и индукционные. Электронные электрические счетчики всегда основываются на том, что проводят прямое измерение силы тока и напряжения на силовой линии, проходящей через систему. Шкала такого типа оборудования представляет собой электронный тип циферблата, а также имеет уникальную возможность сохранять значения потребленной электроэнергии во встроенной памяти.

В данном типе счетчика электроэнергии отсутствует механика, а сам ток будет проходить через микросхемы и полупроводники напрямую. К преимуществам данного типа оборудования относят его небольшой размер и вес, удобство в подключении, благодаря разнообразию производимых моделей. Электронные счетчики электроэнергии могут производиться специально для ведения одно- или двухтарифного учета. Их можно устанавливать в специальную автоматизированную систему для коммерческого учета потребляемого электричества.

Несмотря на то, что у данных приборов более широкий ассортимент функционала, чем у другого типа, его интерфейс достаточно простой и понятный. Благодаря цифровым значениям на шкале хозяева получают возможность точно считывать необходимую информацию с электронного счетчика. Данный вид считывающего оборудования имеет меньший гарантийный срок, поскольку он не так надежен как индукционный тип.

Индукционные электрические счетчики являются на текущий момент самыми распространенными. Они представляют собой механическую конструкцию, в которой установлено две специальные катушки – для тока и напряжения. Когда работает этот счетчик, то образовывается магнитное поле, которое и приводит эти катушки в движение. Диски, в свою очередь, начинают двигать шкалу со значениями на циферблате, что в результате выводит объем потребляемой электроэнергии.

Скорость работы системы будет напрямую зависеть от уровня напряжения в электрической сети. Чем больше будет значение мощности, чем выше будет и скорость оборота диска. При подсчете индукционный вид счетчиков энергоснабжения имеет погрешности при подсчете. Для того чтобы повысить класс точности показаний, потребуется дорогостоящая трата. Средний срок службы для такого оборудования обычно составляет около 15 лет.

Советы и рекомендации

Тем не менее, в условиях использования большого количества бытовых приборов с разными показателями мощности, рекомендуется отдавать предпочтение трехфазным счетчикам, что позволяет подключать энергоемкие устройства, которые рассчитаны на напряжение в 220 В и 380 В.

При выборе прибора нужно обязательно обращать внимание на расчётные показатели тока, а также класс точности, представленный наибольшей допустимой относительной погрешностью, выраженной в процентах. Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев

Срок давности пломбы на однофазном счетчике не может превышать два года

Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев. Срок давности пломбы на однофазном счетчике не может превышать два года.

2.4. Определение группы соединения обмоток трансформатора.

Группа соединения обмоток трансформатора имеет особо важное значение для параллельной работы его с другими трансформаторами. Метод двух вольтметров для определения группы соединения обмоток является распространенным и доступным

Метод основан на совмещении векторных диаграмм первичного и вторичного напряжений, измерении напряжений между соответствующими выводами и последующем сравнении этих напряжений с условным

Метод двух вольтметров для определения группы соединения обмоток является распространенным и доступным. Метод основан на совмещении векторных диаграмм первичного и вторичного напряжений, измерении напряжений между соответствующими выводами и последующем сравнении этих напряжений с условным.

Для проведения опыта собирают схему, показанную на рис.3.

Рис.3 Определение группы соединения обмоток трансформатора методом двух вольтметров.

Вводы А-а соединяют между собой, а на линейные вводы А, В, С обмотки ВН подают трехфазовое напряжение 220 В. это напряжение измеряется вольтметром PV1. вольтметром PV2 измеряется напряжение между вводами В-в, С-с, В-с, С-в. измеренные напряжения сравнивают с условным Uусл. Условное напряжение определяется по формуле:

Где U2л – линейное напряжение на вводах обмотки НН во время опыта В.

Кл – линейный коэффициент трансформации.

Где Uл1 – линейное напряжение, подведенное к обмотке ВН при опыте.

Результаты измерений группы соединений заносятся в таблицу 3

Напряжение на вводах

Полученные напряжения сравнивают с условным напряжением. На основании сравнения и по таблице 4 определяется группа соединений обмоток трансформатора.

Сравнение на вводах Uусл

Примечание: М – меньше, Б – больше, Р – равно.

2.5 Определение сопротивления обмоток трансформатора постоянному току.

При заданном измерении могут выявится следующие характерные дефекты:

а) недоброкачественная пайка и плохие контакты в обмотке и в присоединении вводов;

б) обрыв одного или нескольких параллельных проводников в обмотке.

Измерение сопротивления обмоток в данном случае производится мостовым методом – мостом Р 353. Измерение производится на всех ответвлениях и на всех фазах. При наличии выведенной нейтрали (0) измерение производится между фазными выводами и нулем. Если обмотка соединена в «звезду», то сопротивление фазы можно определить /1/

Где RAB, RВС, RАС – сопротивления на линейных зажимах АВ, ВС, АС.

Полученные значения сопротивления разных фаз при одном положении переключателя не должны отличаться друг от друга более чем на 2%. Данные измерений следует занести в таблицу 5.

Примечание в данной работе трансформатор имеет одно положение переключателя.

Назначение, устройство и работа прибора Э236.

Прибор Э236 предназначен для контроля технического состояния и испытания изоляции при техническом обслуживании и ремонте якорей автотракторных генераторов, стартеров и электродвигателей постоянного тока с номинальным напряжением 12 и 24 В. Диаметр проверяемых якорей от 25 до 180 мм при питании прибора от однофазной электрической цепи переменного тока напряжением 220В. /2/

Рис.4 Вид на лицевую панель прибора Э236

Конструктивно прибор представляет собой настольную измерительную установку, имеющую дроссель, измерительную цепь, контактные устройства.

С черным проводом (левое) контактное устройство используется при испытании электрической прочности изоляции. При нажатии рукоятки стержень утопает до упора, замыкая цепь. В свободном состоянии цепь обесточена.

С синим проводом (правое) контактное устройство служит для снятия с коллектора наводимой в якоре ЭДС, и применяется при определении короткозамкнутых секций и витков, обрывов и т.д. Верхняя пластина устройства – подвижная и позволяет установить в зависимости от шага и ширины пластин коллектора якоря необходимый размер между торцами пластин. В нерабочем положении оба контактных устройства должны быть установлены на задней стенке прибора в кронштейнах.

На рис.5 приведена принципиальная электрическая схема прибора.

Рис.5 Принципиальная электрическая схема прибора Э236.

Дроссель L1 имеет основную обмотку (1000 витков проводом ПЭВ-2 диаметром 0,4мм) для создания магнитного потока в магнитопроводе и проверяемом якоре, и дополнительную обмотку (1100 витков проводом ПЭВ-2 диаметром 0,2мм). Питание обмоток дросселя осуществляется напряжением 220В. Основная обмотка дросселя имеет отвод от 54 витка, что обеспечивает питание лампы HL2, служащей для сигнализации включенного состояния прибора. Для защиты питающей сети от перегрузок и КЗ в цепи основной обмотки установлен предохранитель F1.

Зависимость КПД от коэффициента нагрузки

В процессе эксплуатации любого оборудования важен его КПД. Для трансформаторного оборудования на подстанции или на производстве это соотношение между напряжением, поступающим из сети, и напряжением, выдаваемым потребителям:

КПД = Р2/Р1

По сути, это эффективность преобразования напряжения.

На практике используется более точная формула:

КПД = 1- (∑P – (P2 + ∑P)), где:

∑P – сумма потерь на обмотках и железе.

Потери определяются, исходя из опытов короткого замыкания (Рк) и холостого хода (Р).

КПД достигает максимального значения, если равны потери в стали и обмотках.

Так как отношение потерь холостого хода к выдаваемому напряжению (Р/Р1) равно 0,25-0,4, то максимальное значение КПД достигается коэффициенте загрузки 0,5-0,7.

Как определить коэффициент нагрузки трансформатора на практике? Существуют каталоги и стандарты с таблицами Рк и Р.

Для вычисления оптимальной величины используется формула:

βопт = √P/Pк.

Это примерно 0,45-0,5.

При снижении или превышении показателя КПД снижается, что влечет за собой повышение эксплуатационных затрат.

Если токи небольшие, полезная работа равна потерям. При превышении оптимальной загрузки греются провода обмоток и насыщается сердечник, преобразователь греется. В процессе эксплуатации чаще всего есть возможность регулировать уровень нагрузки таким образом, чтобы получить оптимальную величину КПД.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В 3 5 10 15 20 30 40 50 60 75 100
Коэффициент, n Номинальная предельная кратность
3000/5 37 31 25 20 17 13 11 9 8 6 5
4000/5 38 32 26 22 20 15 13 11 10 8 6
5000/5 38 29 25 22 20 16 14 12 11 10 8
6000/5 39 28 25 22 20 16 15 13 12 10 8
8000/5 38 21 20 19 18 14 14 13 12 11 9
10000/5 37 16 15 15 14 12 12 12 11 10 9
12000/5 39 20 19 18 18 12 15 14 13 12 11
14000/5 38 15 15 14 14 12 13 12 12 11 10
16000/5 36 15 14 13 13 12 10 10 10 9 9
18000/5 41 16 16 15 15 12 14 14 13 12 12

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:

Где: Кл- коэффициент трансформации линейных напряжений;

U1 — линейное напряжение обмотки ВН;

U2 — линейное напряжение обмотки НН.

При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных

трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки

где: Кф — фазный коэффициент трансформации;

U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;

WI,W2 — число витков обмоток ВН и НН соответственно.

При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.

Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).

Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.

Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)

Рис.2 Определение коэффициента трансформации.

Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.

Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В

Пределы измерения вольтметров: PV1-250 В,PV2-15В

Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.

Примечание: В данной работе трансформатор имеет одно положение переключателя.

Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.

Трансформаторы тока

Трансформатор тока служит для преобразования тока, протекающего в первичной цепи к унифицированному сигналу (как правило, тоже току) во вторичной цепи. Отношение первичного тока (I1) ко вторичному (I2) — есть коэффициент трансформации (kТТ):

I1/I2=kТТ

Для стандартизации изготовления по ГОСТ 7746-2001 приняты ряды для трансформаторов тока:

  • Первичный ток (I1), А: 1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000; 8000; 10000; 12000; 14000; 16000; 18000; 20000; 25000; 28000; 30000; 32000; 35000; 40000;
  • Вторичный ток (I2), А: 1; 2; 5.

Идеальная работа трансформатора тока — когда его вторичная обмотка замкнута накоротко, т. е. сопротивление на выводах обмотки приближается к нулю. На практике во вторичной обмотке присутствуют хоть и низкоомные, но всё же имеющие сопротивление катушки реле, обмотки измерительных преобразователей или источников оперативного тока. И, естественно, сами провода. Все они подключены последовательно, значит полное сопротивление на вторичной обмотке складывается из всех сопротивлений включенных в неё устройств. Оказывается, чем больше это сопротивление, тем хуже точность измерения у трансформатора тока.

Номинальные параметры приведены ниже, но не всё из них указывают на табличках трансформаторов тока:

  • Номинальное напряжение UНОМ, кВ: Например, 10 кВ;
  • Коэффициент трансформации, например: 150/5, где 150 — номинальный первичный ток, а 5 — номинальный вторичный ток;
  • Наибольший рабочий первичный ток I1КР, А: 160;
  • Номинальная вторичная нагрузка S2НОМ при коэффициенте нагрузки Cosφ2 = 1, ВА;
  • Номинальная вторичная нагрузка S2НОМ при активно-индуктивной нагрузке Cosφ2 = 0,8;
  • Класс точности обмотки: 0,5S; 10Р и т. д.
  • Не всегда, но указывают точку намагничивания. Например: 0,15 А — при этом значении должен произойти перегиб вольт-амперной характеристики. Или еще указывают и ток, и напряжение: 0,15 А; 63 В. Про вольт-амперную характеристику (ВАХ) поговорим дальше.
  • Номинальная предельная кратность вторичных обмоток для защиты KНОМ;
  • Номинальный коэффициент безопасности приборов КБНОМ, вторичных обмоток для измерений;

По ГОСТ 7746-2015 вывода трансформатора тока обозначаются буквами:

  • Односекционная первичная обмотка: Л1 — начало, Л2 — конец;
  • Если первичная обмотка состоит из нескольких составляющих (секций) соединенных последовательно, то общее начало будет всё равно Л1, общий конец — Л2, а промежуточные между ними обмотки будут обозначаться Н2, Н3, … Нn — начало 2-ой, 3-ей и так далее до n-ой секции; концы этих секций будут иметь обозначение К1, К2, … Кn.

В отличие от первичной обмотки, которая может быть составной, но всё равно является одной цепью, вторичных обмоток может быть несколько. Мало того, вторичные обмотки могут иметь ответвления. С учетом этого их обозначают так:

  • Если вторичная обмотка одна, то начало обозначают И1, а конец И2;
  • Когда вторичная обмотка одна, но имеет ответвления, то И1 — начало, И2, И3, … Иn-1 — промежуточные,  Иn — конец;
  • Если вторичных обмоток несколько, то перед И добавляют число, обозначающее порядковый номер обмотки: 1И1-начало первой обмотки, 1И2- конец первой обмотки, 2И1-начало второй обмотки, 2И2- конец второй обмотки и так далее.

Поясню еще, что такое «начало» и «конец» у обмотки на всякий случай. Это, разумеется условные понятия. Но, как мы увидим дальше, пренебрегать ими никак нельзя. В этом должен быть порядок. Итак, представим ток в виде потока электронов. В какой-то момент поток течет от Л1 к Л2 и наводит во вторичной обмотке другой поток поменьше. Этот поток будет выходить из И1 и стремиться через нагрузку к И2. Еще раз: в Л1 — входит, из И1 — выходит. Такое направление токов называется — «в фазе«, а полярность выводов (Л1 и И1) — совпадает. Если в Л1 входит и в И1 входит, то это противофаза, а полярность выводов считается противоположной. В следующий момент поток электронов меняется на обратный и течет от Л2 к Л1, и из Л1 — выходит, а в И1 входит вторичный ток. И так 50 раз за секунду при частоте 50 Гц.

Разновидности приборов учета электроэнергии

Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.

На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).

Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.

В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.

Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.

Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.

По типу изоляции

Трансформатор электротока может быть:

  • с эпоксидной смолой или специальным лаком;
  • в пластиковом корпусе;
  • с твердой изоляцией из фарфора, бакелита. твердого пластика;
  • с вязким составом (маслом);
  • наполненные газом;
  • с масляно-бумажной изоляцией.

Какие параметры учитывать

Для расчета показаний электросчетчика с трансформаторами тока важен коэффициент трансформации. Он может быть одноступенчатый или каскадный (многоступенчатый). Последний вид ТТ отличается наличием нескольких вторичных обмоток и большим количеством витков в первичной обмотке.

Нежелательно покупать ТТ со слишком высоким уровнем трансформации. При подобном выборе придется устанавливать счетчик на приемный вход. Более популярны преобразователи с одним коэффициентом, не меняющие показание во время эксплуатации. При их использовании проблема, как считаются показания счетчика электроэнергии, подключенного через трансформаторы тока, решается проще.

Расчет электроэнергии по счетчику с трансформаторами тока можно провести только в том случае, если известен коэффициент трансформации. Он должен быть указан в техдокументации, с которой продавался ТТ, и на корпусе. При подозрениях на неточности в отображаемых цифрах коэффициент можно посчитать самостоятельно.

Чтобы рассчитать коэффициент, необходимо подключить преобразователь к электротоку, создающему короткое замыкание во вторичной обмотке, и измерить, сколько ампер в ней.

Коэффициент трансформации – соотношение значений поданного электротока и проходящего во вторичной обмотке.

Например, если короткое замыкание вызвали 150 А, на вторичной обмотке 5 А, действительный коэффициент 30. Это более точное значение, чем номинальное, которое определяется по номинальному электротоку первичной и вторичной обмотки. Результат расчета показаний электросчетчика с трансформаторами тока более точный.

Токи циркуляции, коэффициент трансформации, параметры короткого замыкания

Чаще на подстанции трансформаторы включаются параллельно по очевидным причинам. Потребление слишком велико, чтобы нагрузку выдержало одно-единственное изделие. Казалось бы, никаких особенностей здесь не имеется, на практике технические характеристики трансформаторов даже одной заводской партии отличаются. Нормы выбираются согласно ГОСТ 14209, IEC 905. Считается допустимой установки совместно указанных отклонений коэффициента трансформации:

  1. Для изделий с коэффициентом трансформации 3 и менее, на неосновном ответвлении – 1% (в обе стороны).
  2. Для изделий с коэффициентом трансформации свыше 3, на основном ответвлении – 0,5% в каждую сторону.

На подстанциях, где стоят изделия с разным коэффициентом трансформации, уравнительные токи между ними возникают при отсутствии нагрузки. Нагрузка ситуацию усугубляет. Токи распределяются обратно пропорционально сопротивлениям короткого замыкания. Предъявляются требования к другим параметрам. Допустимое отклонение напряжения короткого замыкания ограничено пределами 19%, отдают предпочтение трансформаторам одной парии.

Сила тока обмоток

В трехфазных сетях требования к коэффициенту распространяются только на обмотки в рамках отдельной фазы. Если значения отличаются, начинает циркулировать ток. Даже если нет никакой нагрузки. Иногда феномен называют уравнительным, уравнивает падение напряжения двух параллельно включенных ветвей (обмоток). В формуле зависимости амплитуды этого тока от коэффициента трансформации: в числителе с правой стороны относительная разница (см. список выше), знаменателе сформирован удвоенным относительным напряжением (короткого замыкания). Левая часть равенства содержит отношение тока циркуляции к номинальному.

Здесь поясним: напряжение короткого замыкания берется в процентах номинального. Значение устанавливается опытным путем. На первичную обмотку подают некое напряжение, вторичную замыкают накоротко. Добиваются соответствия тока рабочему. Регулируют амплитуду входного напряжения. Значение, при котором достигаются указанные выше условия, в дальнейшем называют напряжением короткого замыкания. Обычно выражается в процентах от номинального, что отражено формулой.

Отношение токов

Соотношение показывает: при Uk% = 5, разнице между коэффициентами трансформации 1% циркуляционные токи достигнут 10% номинала. Вызовет нагрев обмоток, усугубит на участке ситуацию с тепловыми потерями. В случае если напряжения короткого замыкания отличаются для двух трансформаторов, полагается воспользоваться вместо удвоения операцией суммирования. Вдобавок номинальная мощность различна – приведите цифры к общему знаменателю. Для этого (на выбор) одна цифра делится на собственную мощность, умножается на номинальную мощность другого трансформатора.

Иногда меньше ошибок, если воспользоваться абсолютными величинами вместо относительных. Здесь под U понимается фазное напряжение со стороны обмотки НН; Zk1, Zk2 – комплексные сопротивления (импеданс короткого замыкания) изделий. k1, k2 – коэффициенты трансформации обоих изделий, а буквой греческого алфавита дельта обозначена разница. Токи разного направления, стремятся уравновесить разницу потенциалов через падение напряжения. Комплексность сопротивления напоминает об индуктивной составляющей, поскольку обмотка – это катушка.

Формула трансформаторов, количеством больше двух

При количестве трансформаторов большем двух формула усложняется. Приводится изображение, поскольку физический смысл каждой величины понятен из сказанного ранее. Ток формулы суммарный, для каждой параллельной обмотки меньше в число раз, равное коэффициенту трансформации. Точка над символом означает: число комплексное.

Ощутимо улучшает ситуацию наличие специальных устройств регулирования напряжения. В этом случае число витков изменяется, и коэффициенты трансформации выравниваются. Под нагрузкой токи распределяются неравномерно. В идеальном случае значение обратно пропорционально входному комплексному сопротивлению изделия. При разнице индуктивностей возможно применение реакторов, в любом случае понятно, при параллельном включении параметры обоих трансформаторов не должны слишком расходиться. Отрадно, что для режима нагрузки точный расчет коэффициентов не требуется… потому что явное различие выводит систему в аварийный режим. Конкретика не важна. Главное – избежать окончательного выхода изделий из строя.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: