Формула расчета падения делителя напряжения на резисторе: онлайн калькулятор

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:


Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

U_1 = U_2 = U

А для токов справедливо следующее выражение:

I = I_1 + I_2

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

I_1 = \frac{U_1}{R_1} = \frac{U}{R_1}
I_2 = \frac{U_2}{R_2} = \frac{U}{R_2}

Подставим эти выражения в формулу общего тока:

I = \frac{U}{R_1} + \frac{U}{R_2} = U\medspace (\frac{1}{R1} + \frac{1}{R2})

А по закону Ома:

I = \frac{U}{R_0}

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}

Данную формулу можно записать и несколько иначе:

R_0 = \frac{R_1R_2}{R_1 + R_2}

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}

Что такое делитель тока

Какие ассоциации у вас возникают при словосочетании “делитель тока”? У меня сразу возникает ассоциация с делителем потока. Давайте представим себе реку, у которой очень большой поток.

Это поток воды бежит с очень большой скоростью! Он смывает на своем пути камни, землю, деревья. Представьте, что эта река находится рядом с вашим домом. Через год-два ваш дом смоет под чистую! Чтобы этого не произошло, надо ослабить течение реки, чтобы ее поток был слабый. Например как здесь:

Но как это сделать? А почему бы нам не прорыть большой канал, чтобы бОльшая часть воды текла через него. А это хорошая идея не так ли?

Весь смак заключается в том, что в каждой отдельной речке скорость воды будет меньше. В электротехнике и электронике все тоже самое! Река – это провод, сила потока – это сила тока, ширина реки – сопротивление, напряжение – угол наклона реки. Все элементарно и просто!

Последовательное включение

Так называется объединение в один участок цепи двух или более резисторов, в котором их соединение между собой происходит только в одной точке. Импеданс при последовательном включении определяется как сумма сопротивлений каждого отдельного элемента: Rобщ = R1+R2+…+Rn.

Следовательно, ток, протекающий через такую цепочку, будет становиться всё меньше после прохождения через последовательно включённый резистор. Чем будет больше элементов в цепи, тем труднее ему будет пройти их всех. Таким образом, его общее значение определяется как Iобщ = U / (R1+R2+…+Rn).

Поэтому можно утверждать, что в последовательном соединении существует только один путь для протекания тока. Чем будет больше количество резисторов в линии, тем меньше будет ток на этом участке.

Падение разности потенциалов при таком типе соединения на каждом элементе будет иметь своё значение. Оно определяется формулой URn = IRn*Rn, и чем больше будет импеданс элемента, тем больше энергии в нём начнёт выделяться.

Выходное сопротивление

Яркий пример выходного сопротивления — это закон Ома для полной цепи, в котором есть так называемое «внутреннее сопротивление».

Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогеновую лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:

И как только подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.

Разница напряжения, то есть 0,3 В (12,09 -11,79) у нас падало на так называемом внутреннем сопротивлении r . Оно же и есть ВЫХОДНОЕ СОПРОТИВЛЕНИЕ. Его также называют еще сопротивлением источника или эквивалентным сопротивлением.

У всех аккумуляторов есть это внутреннее сопротивление r, и «цепляется» оно последовательно с источником ЭДС ( Е ).

Рис. 13 — Внутреннее сопротивление аккумулятора

Выходным сопротивлением обладают все источники питания. Это может быть блок питания, генератор частоты, либо вообще какой-нибудь усилитель.

В теореме Тевенина говорилось, что любую цепь, которая имеет две клеммы и содержит в себе много различных источников ЭДС и резисторов разного номинала можно привести к источнику ЭДС с каким-то значением напряжения ( Eэкв ) и с каким-то внутренним сопротивлением ( Rэкв ).

Eэкв— эквивалентный источник ЭДС

Rэкв— эквивалентное сопротивление

То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же выходное сопротивление.

В режиме холостого хода (то есть, когда к выходным клеммам не подцеплена нагрузка) с помощью мультиметра мы можем замерить ЭДС ( E ). С замером ЭДС вроде бы понятно, но вот как замерить Rвых ?

В принципе, можно устроить короткое замыкание. То есть замкнуть выходные клеммы толстым медным проводом, по которому у нас будет течь ток короткого замыкания Iкз .

Рис. 15 — Ток короткого замыкания

В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что

Но есть небольшая загвоздка. Теоретически — формула верна. Но на практике я бы не рекомендовал использовать этот способ. В этом случае сила тока достигает бешенного значения, да вообще, вся схема ведет себя неадекватно.

Есть другой, более безопасный способ. Не буду повторяться, просто скопирую со статьи закон Ома для полной цепи, где мы находили внутреннее сопротивление аккумулятора. В той статье, мы к акуму цепляли галогеновую лампочку, которая была нагрузкой R. В результате по цепи шел электрический ток. На лампочке и на внутреннем сопротивлении у нас падало напряжение, сумма которых равнялась ЭДС.

Итак, для начала замеряем напряжение на аккумуляторе без лампочки (рис. 17).

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае E = 12,09 В.

Как только мы цепанули нагрузку, то у нас сразу же упало напряжение на внутреннем резисторе и на нагрузке, в данном случае на лампочке:

Сейчас на нагрузке (на галогенке) у нас упало напряжение

следовательно, на внутреннем резисторе падение напряжения составило

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Подробнее


Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Объединение резистивных радиокомпонентов

Для получения необходимого номинала сопротивления применяются два типа соединения резисторов: параллельное и последовательное. Если их соединить параллельно, то нужно два вывода одного резистора подключить к двум выводам другого. Если соединение является последовательным, то один вывод резистора соединяется с одним выводом другого резистора. Соединения используются для получения необходимых номиналов сопротивлений, а также для увеличения рассеивания мощности тока, протекающего по цепи.

Параллельное соединение

При параллельном подключении значение напряжения на всех резисторах одинаковое, а сила тока — обратно пропорциональна их общему сопротивлению. В интернете web-разработчики создали для расчета величины общего сопротивления параллельного соединения резисторов онлайн-калькулятор.

Рассчитывается общее сопротивление при параллельном соединении по формуле: 1 / Rобщ = (1 / R1) + (1 / R2) + …+ (1 / Rn). Если выполнить математические преобразования и привести к общему знаменателю, то получится удобная формула параллельного соединения для расчета Rобщ. Она имеет следующий вид: Rобщ = (R1 * R2 * … * Rn) / (R1 + R2 + … + Rn). Если необходимо рассчитать величину Rобщ только для двух радиокомпонентов, то формула параллельного сопротивления имеет следующий вид: Rобщ = (R1 * R2) / (R1 + R2).

При ремонте или проектировании схемы устройства возникает задача объединения нескольких резистивных элементов для получения конкретной величины сопротивления. Например, значение Rобщ для определенной цепочки элементов равно 8 Ом, которое получено при расчетах. Перед радиолюбителем стоит задача, какие нужно подобрать номиналы для получения нужного значения (в стандартном ряду резисторов отсутствует радиокомпонент с номиналом в 8 Ом, а только 7,5 и 8,2). В этом случае нужно найти сопротивление при параллельном соединении резистивных элементов. Посчитать значение Rобщ для двух элементов можно следующим образом:

  1. Номинал резистора в 16 Ом подойдет.
  2. Подставить в формулу: R = (16 * 16) / (16 + 16) = 256 / 32 = 8 (Ом).

Вам это будет интересно Устройство и принцип действия амперметра для измерения тока

В некоторых случаях следует потратить больше времени на подбор необходимых номиналов. Можно применять не только два, но и три элемента. Сила тока вычисляется с использованием первого закона Кирхгофа. Формулировка закона следующая: общее значение тока, входящего и протекающего по цепи, равен выходному его значению. Величина силы тока для цепи, состоящей из двух резисторов (параллельное соединение) рассчитывается по такому алгоритму:

  1. Ток, протекающий через R1 и R2: I1 = U / R1 и I2 = U / R2 соответственно.
  2. Общий ток — сложение токов на резисторах: Iобщ = I1 + I2.

Например, если цепь состоит из 2 резисторов, соединенных параллельно, с номиналами в 16 и 7,5 Ом. Они запитаны от источника питания напряжением в 12 В. Значение силы тока на первом резисторе вычисляется следующим способом: I1 = 12 / 16 = 0,75 (А). На втором резисторе ток будет равен: I2 = 12 / 7,5 = 1,6 (А). Общий ток определяется по закону Кирхгофа: I = I1 + I2 = 1,6 + 0,75 = 2,35 (А).

Последовательное подключение

Последовательное включение резисторов также применяется в радиотехнике. Методы нахождения общего сопротивления, напряжения и тока отличаются от параллельного подключения. Основные правила соединения следующие:

  1. Ток не изменяется на участке цепи.
  2. Общее напряжение равно сумме падений напряжений на каждом резисторе.
  3. Rобщ = R1 + R2 + … + Rn.

Пример задачи следующий: цепочка, состоящая из 2 резисторов (16 и 7,5 Ом), питается от источника напряжением 12 В и током в 0,5 А. Необходимо рассчитать электрические параметры для каждого элемента. Порядок расчета следующий:

  1. I = I1 = I2 = 0,5 (А).
  2. Rобщ = R1 + R2 = 16 + 7,5 = 23,5 (Ом).
  3. Падения напряжения: U1 = I * R1 = 0,5 * 16 = 8 (В) и U2 = I * R2 = 0,5 * 7,5 = 3,75 (В).

Не всегда выполняется равенство напряжений (12 В не равно 8 + 3,75 = 11,75 В), поскольку при этом расчете не учитывается сопротивление соединительных проводов. Если схема является сложной, и в ней встречается два типа соединений, то нужно выполнять расчеты по участкам. В первую очередь, рассчитать для параллельного соединения, а затем для последовательного.

Емкостной делитель напряжения

Простейший емкостной делитель напряжения состоит из двух последовательно соединенных конденсаторов и используется для снижения величины U на отдельных элементах электрической цепи.

Делитель постоянного напряжения на конденсаторах чаще всего применяют многоуровневых инверторов напряжения, широко используемых как на электроподвижном составе, так и в других направлениях силовой электроники.

Главная сложность практического применения такой схемы (и всех подобных схем) заключается в невозможности обеспечения равномерного разряда конденсаторов, вследствие чего напряжения на них будет распределяться не поровну. Чем сильнее разряжен один конденсатор по сравнению с другим (иди с другими), тем большая разница в U будет на них, что наглядно отображает формула:

По этой причине подобные схемы крайне нестабильно работают и обязательно предусматривают узлов подзарядки конденсаторов с целью выравнивания напряжения на последних.

Емкостной делитель напряжения в цепи переменного тока

В радиоэлектронике в большей степени находят применение емкостные делители переменного напряжения.

Конденсатор, как и катушка индуктивности, относится к реактивному элементу, то есть потребляет реактивную мощность от источника переменного тока, в отличие от резистора, который является активным элементов и потребляет исключительно активную мощность.

Реактивный элемент

Здесь следует кратко пояснить разницу между активной и реактивной мощностями. Активная мощность выполняет полезную работу и реализуется только в том случае, когда ток и напряжение направлены в одном направлении и не отстают друг от друга, то есть находятся в одной фазе, что имеет место только на резисторе. На конденсаторе ток отстает от напряжения на угол φ = 90°. В результате чего ток напряжение находятся в противофазе, поэтому когда ток имеет максимальное значение напряжение равно нулю, а произведение этих двух величин дают мощность, которая в таком случае равна нулю, так как один из множителей равен нулю. Следовательно, мощность не потребляется.

Аналогичные процессы протекают и в цепи с катушкой индуктивности. Разница лишь в том, что на индуктивности i отстает от u на угол φ = 90°.

Реактивная мощность проявляется только в цепях переменного тока. Она составляет часть полной мощности и определяется по формуле:

Реактивная мощность в отличие от активной, не потребляется нагрузкой, а циркулирует между источником питания и нагрузкой. Поэтому конденсатора и катушка индуктивности являются реактивными элементами, не потребляющими активную мощность и по этой причине они практически не нагреваются.

Расчет сопротивления делителя напряжения на конденсаторах заключается в определении необходимых значений сопротивлений.

Сопротивление конденсатора XC является величиной не постоянной и зависит от частоты переменного тока f и емкости C:

Как видно из формулы, сопротивление снижается с увеличением частоты и емкости. Для постоянного тока, частота которого равна нулю, сопротивление стремится к бесконечности, поэтому, рассматриваемая далее схема емкостного делителя напряжения не применяется постоянном токе.

Для снижения величины uвых, например в два раза, емкости C1 и C2 должны быть равны. Универсальные формулами для определения выходных uвых1 и uвых2 в зависимости от входного и емкостей C1 и C2 имеют вид, аналогичный для резисторных делителей:

Поскольку частота переменного тока для всех конденсаторов одинакова, то формулу можно упростить:

Индуктивный делитель напряжения

В качестве делителей переменного напряжения также, но гораздо реже, применяют катушки индуктивности, которые относятся к реактивным элементам. Однако, в отличие от конденсаторов, которые являются накопителями электрического поля, катушки индуктивности накапливают магнитное поле.

Индуктивное сопротивление зависит от индуктивности L и частоты переменного тока f. С ростом этих параметров сопротивление катушки переменному току возрастает.

XL = 2πfL.

Упрощенный вариант формулы:

Как вы наверняка уже заметили, чтобы рассчитать емкостной делитель напряжения достаточно знать емкости конденсаторов, а индуктивный делитель – индуктивности.

  • Делитель напряжения на резисторах
  • Инвертор напряжения
  • Умножитель напряжения
  • Замена электролитического конденсатора

Пять схем делителя напряжения предназначенных не только для деления напряжения

Делитель напряжения в классическом варианте представляет собой очень простую схему, состоящую из двух резисторов и предназначенную для уменьшения напряжения до нужных значений.

Но делитель напряжения с некоторыми изменениями можно использовать не только лишь для деления напряжения. В данном материале мы рассмотрим пять несложных схем, которые могут быть полезны на практике для решения тех или иных схемотехнических задач.

Для чего нужен делитель напряжения

Делитель напряжения для измерения напряжения батареи

Есть несколько разных случаев, когда вам может потребоваться «понизить» напряжение аккумулятора или батареи. В этом случае делитель не заменяет понижающий регулятор. Так, вам может потребоваться понизить напряжение аккумулятора, чтобы измерить его. Предположим, вы используете микропроцессор с 3.3 В (как у Raspberry Pi, например) или микроконтроллер (к примеру, ESP8266). Ваша плата питается от двух последовательно соединенных литий-полимерных аккумуляторов. Вместе эти батареи создают питание 7.4 вольта.

Два резистора сопротивлением 100 кОм уменьшают напряжение с 7.4 до 3.7 вольт. Хотя это уже немного, оно все еще слишком высоко для систем с напряжением 3.3 В. Когда деление напряжения пополам не работает, можно посчитать делитель напряжения с разными сопротивлениями. Взяв R1 равным 100 кОм и R2 равным 68 кОм делитель выдает около 3.0 вольта. Этого достаточно, правда?

Но здесь есть две проблемы. Во-первых, подключение этих двух резисторов последовательно к батарее создаст ток утечки. Независимо от того, что еще происходит в цепи, через делитель будет проходить 44 мкА. Вроде бы мало, но это означает, что мы тратим 325 мкВт энергии впустую. С питанием от USB не стоит беспокоиться о такой большой утечке. Однако при питании от батарей эта утечка означает меньшее время автономной работы. Во-вторых, существует проблема обратного питания, от чего тоже надо избавиться. Для этого желательно реализовать мониторинг напряжения.

Тем не менее, в большинстве приложений не требуется постоянный мониторинг напряжения батареи. Например, вы можете просто включить делитель напряжения, когда вы делаете измерение, как это показано на схеме ниже. Добавьте PNP-транзистор с высокой стороны к простому делителю напряжения. При этом цифровая линия ввода/вывода будет управлять NPN-транзистором, который включает и выключает PNP-транзистор. При такой конфигурации ни один ток не может прокрасться через защитные диоды аналогового вывода. И у вас есть полный контроль над работой делителя.

Делитель напряжения для смещения уровня напряжения

Современные микроконтроллеры основаны на 3.3-вольтовой логике с использованием в некоторых случаях 1.8 В. Использование более старого стандарта напряжения 5.0 В означает, что вам нужны сигналы ввода-вывода с изменением напряжения. Например, подключение выхода Arduino Uno непосредственно к входу ESP8266 может привести к повреждению последнего.

Конечно, для целей согласования уровней напряжения можно использовать специальные микросхемы, например, TXB0108. Но гораздо проще и дешевле воспользоваться делителем напряжения, как показано на схеме ниже, в которой напряжение с вывода Arduino Uno преобразуется для приема на вывод Raspberry Pi. Только следует учитывать, что такая схема справедлива в отношении однонаправленных сигналов.

Делитель напряжения для опорного напряжения

Не все цепи делителя напряжения используют только резисторы. Один пример, полезный для формирования опорного напряжение, содержит резистор и диод.

В данном случае применяется стабилитрон (зенеровский диод) на 3.3 В. Используя стабильный источник питания на 5.0 В, резистор на 340 Ом можно получить стабильное напряжение 3.0 вольта. Имейте в виду, что это не регулятор напряжения. Ну, по крайней мере, не тот, который может обеспечить много тока.

Делитель напряжения для формирования лесенки сопротивлений R-2R

Лестница R-2R представляет собой кучу повторяющихся резисторов или сеть резисторов. Идея состоит в том, что при включении большего количества выходов это влияет на выходное напряжение. Эта схема является одним из способов сделать цифро-аналоговый преобразователь (ЦАП). Вы активируете цифровые линии и получаете аналоговое напряжение. Поскольку это форма делителя тока, эффективность зависит от того, насколько хорошо резисторы согласованы друг с другом. Поэтому вы должны использовать прецизионные компоненты или измерять каждый, чтобы они соответствовали друг другу.

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Можно рассчитать общее сопротивление в резисторах:

R=R1*R2/(R1+R2)

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:I=I1+I2

Найти общий ток можно, зная закон Ома

Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*UОстаётся узнать, как найти ток на обоих резисторах:

I=U/R

Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):

r — внутреннее сопротивление устройства.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: